Home > Press > Inhaled Nanoparticles Deliver Potent Anticancer Cocktail to Lung Tumors and Block Resistance
Abstract:
An ideal treatment for lung cancer would be one that could be inhaled deep into lung tissue where it would deliver tumor-killing agents that would then largely stay in the lungs, avoiding the toxicities that limit the effectiveness of today's lung cancer therapies. Now, researchers at Rutgers, The State University of New Jersey, have developed an inhalable porous silica nanoparticle that not only delivers potent anticancer drugs only to non-small cell lung tumors, but also delivers agents that prevent the development of drug resistance.
Reporting its work in the Journal of Drug Targeting, a research team headed by Tamara Minko showed that a targeted silica nanoparticle was effective at getting a cocktail of drugs into lung tumors in animals and triggering cancer cell death. The inhaled nanoparticles largely remaining in the lungs, with a small amount accumulating in the liver and kidneys, the organs that are typically involved in excreting nanoparticles and other administered compounds.
Minko and her colleagues began this project by first developing mesoporous silica nanoparticles that could effectively deliver a mixture of traditional anticancer drugs and siRNA molecules specifically to lung cancer cells. The investigators chose mesoporous silica nanoparticles for two reasons - their pore size makes them ideal for delivering large loads of different types of molecules and they are biocompatible.
The researchers chose the anticancer agents doxorubicin and cisplatin, used today to treat lung cancer, as the primary tumor killing agents. They then designed two siRNA molecules to stop the development of drug resistance that develops during conventional anticancer treatment. One siRNA molecule would block tumor cell production of a drug pump that they use to expel anticancer agents, while the other siRNA would limit production of a protein that tumor cells use to prevent the programmed cell death, or apoptosis, that doxorubicin and cisplatin normally triggers.
To target the nanoparticles to lung tumors, the researchers added a molecule known as LHRH to the surface of the nanoparticle. LHRH binds to a receptor that is produced at high levels by many types of cancers, including lung cancers.
Tests with non-small cell lung tumor cells demonstrated that this complex formulation was highly effective at killing the cells and preventing the expression of the two types of drug resistance responses normally seen. Tests in animals showed that nearly three quarters of the inhaled nanoparticles remained in the lungs and were taken up by tumor cells. In this study, the researchers did not measure efficacy in killing tumors in the animals.
####
About The National Cancer Institute (NCI)
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.
The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.
Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.
For more information, please click here
Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580
Copyright © The National Cancer Institute (NCI)
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||