Home > Press > Inhaled Nanoparticles Deliver Potent Anticancer Cocktail to Lung Tumors and Block Resistance
![]() |
Abstract:
An ideal treatment for lung cancer would be one that could be inhaled deep into lung tissue where it would deliver tumor-killing agents that would then largely stay in the lungs, avoiding the toxicities that limit the effectiveness of today's lung cancer therapies. Now, researchers at Rutgers, The State University of New Jersey, have developed an inhalable porous silica nanoparticle that not only delivers potent anticancer drugs only to non-small cell lung tumors, but also delivers agents that prevent the development of drug resistance.
Reporting its work in the Journal of Drug Targeting, a research team headed by Tamara Minko showed that a targeted silica nanoparticle was effective at getting a cocktail of drugs into lung tumors in animals and triggering cancer cell death. The inhaled nanoparticles largely remaining in the lungs, with a small amount accumulating in the liver and kidneys, the organs that are typically involved in excreting nanoparticles and other administered compounds.
Minko and her colleagues began this project by first developing mesoporous silica nanoparticles that could effectively deliver a mixture of traditional anticancer drugs and siRNA molecules specifically to lung cancer cells. The investigators chose mesoporous silica nanoparticles for two reasons - their pore size makes them ideal for delivering large loads of different types of molecules and they are biocompatible.
The researchers chose the anticancer agents doxorubicin and cisplatin, used today to treat lung cancer, as the primary tumor killing agents. They then designed two siRNA molecules to stop the development of drug resistance that develops during conventional anticancer treatment. One siRNA molecule would block tumor cell production of a drug pump that they use to expel anticancer agents, while the other siRNA would limit production of a protein that tumor cells use to prevent the programmed cell death, or apoptosis, that doxorubicin and cisplatin normally triggers.
To target the nanoparticles to lung tumors, the researchers added a molecule known as LHRH to the surface of the nanoparticle. LHRH binds to a receptor that is produced at high levels by many types of cancers, including lung cancers.
Tests with non-small cell lung tumor cells demonstrated that this complex formulation was highly effective at killing the cells and preventing the expression of the two types of drug resistance responses normally seen. Tests in animals showed that nearly three quarters of the inhaled nanoparticles remained in the lungs and were taken up by tumor cells. In this study, the researchers did not measure efficacy in killing tumors in the animals.
####
About The National Cancer Institute (NCI)
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.
The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.
Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.
For more information, please click here
Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580
Copyright © The National Cancer Institute (NCI)
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Govt.-Legislation/Regulation/Funding/Policy
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Nanomedicine
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |