Home > Press > Nanoparticle-Based Combination Therapy Shows Promise in Colon Cancer Prevention
Abstract:
Using nanoparticles to deliver a cocktail of aspirin and folic acid, researchers at the Western University of Health Sciences (WUHS) have created what could be an effective agent to prevent colon cancer. The nanoparticle formulation, which was simple to prepare, reduced the formation of aberrant crypt foci - an important precursor of colon cancer - by as much as 75 percent in a animal model of colon cancer.
Sunil Prabhu led the research team that developed this polymeric nanoparticle chemoprevention agent. He and his collaborators reported their findings in the journal Cancer Prevention Research.
A growing body of evidence suggests that aspirin, the vitamin folic acid, and calcium supplements each act to prevent the development of the precancerous polyps that become colon tumors. Prabhu and his research team had recently shown that a cocktail of these three agents significantly reduced the viability of human colon cancer cells lines.
Taking these finding one step further, the WUHS team created a biodegradable polymeric nanoparticle that encapsulates aspirin and folic acid in a simple process. The researchers then coated the nanoparticles with a thin layer of an FDA-approved polymer that drug manufacturers use to make pills that only dissolve in the colon.
Using a well-established animal model of colon cancer, the researchers tested a variety of different dose combinations of the three compounds, both encapsulated in a nanoparticle or given as a combined supplement without nanoparticle encapsulation. Nanoparticle-encapsulated aspirin and folic acid were co-administered with a standard calcium supplement. These experiments showed that both the unmodified and encapsulated treatments, given in a variety of different dosing regimens, were effective at preventing the formation of aberrant crypt foci. However, the nanoparticle-calcium combination containing the lowest doses of aspirin and folic acid were more effective than the regimens using the highest doses of the unencapsulated compounds. One interesting finding was that when folic acid and aspirin were encapsulated separately in different nanoparticles and then administered together with calcium, there seemed to be protective effect.
####
About The National Cancer Institute (NCI)
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.
The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.
Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.
For more information, please click here
Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580
Copyright © The National Cancer Institute (NCI)
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||