Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Chemically assembled metamaterials could lead to superlenses and cloaking

Wiesner Lab
Two polymer molecules linked together will self-assemble into a complex shape, in this case a convoluted "gyroid." One of the polymers is chemically removed, leaving a mold that can be filled with metal. Finally the other polymer is removed, leaving a metal gyroid with features measured in nanometers.
Wiesner Lab

Two polymer molecules linked together will self-assemble into a complex shape, in this case a convoluted "gyroid." One of the polymers is chemically removed, leaving a mold that can be filled with metal. Finally the other polymer is removed, leaving a metal gyroid with features measured in nanometers.

Abstract:
Nanomanufacturing technology has enabled scientists to create metamaterials -- stuff that never existed in nature -- with unusual optical properties. They could lead to "superlenses" able to image proteins, viruses and DNA, and perhaps even make a "Star Trek" cloaking device.

Chemically assembled metamaterials could lead to superlenses and cloaking

Ithaca, NY | Posted on November 1st, 2011

Other metamaterials offer unique magnetic properties that could have applications in microelectronics or data storage.

The limitation, so far, is that techniques like electron-beam lithography or atomic sputtering can only create these materials in thin layers. Now Cornell researchers propose an approach from chemistry to self-assemble metamaterials in three dimensions.

Uli Wiesner, the Spencer T. Olin Professor of Engineering, and colleagues present their idea in the online edition of the journal Angewandte Chemie.

Wiesner's research group offers a method they have pioneered in other fields, using block copolymers to self-assemble 3-D structures with nanoscale features.

A polymer is made up of molecules that chain together to form a solid or semisolid material. A block copolymer is made by joining two polymer molecules at the ends so that when each end chains up with others like itself, the two solids form an interconnected pattern of repeating geometric shapes -- planes, spheres, cylinders or a twisty network called a gyroid. Elements of the repeating pattern can be as small as a few nanometers across. Sometimes tri-polymers can be used to create even more complex shapes.

After the structure has formed, one of the two polymers can be dissolved away, leaving a 3-D mold that can be filled with a metal -- often gold or silver. Then the second polymer is burned away, leaving a porous metal structure.

In their paper the researchers propose to create metal gyroids that allow light to pass through, but are made up of nanoscale features that interact with light, just as the atoms in glass or plastic do. In this way, they say, it should be possible to design materials with a negative index of refraction, that is, materials that bend light in the opposite direction than in an ordinary transparent material.

Special lenses made of such a material could image objects smaller than the wavelength of visible light, including proteins, viruses and DNA. Some experimenters have made such superlenses, but so far none that work in the visible light range. Negative refraction materials might also be configured to bend light around an object -- at least a small one -- and make it invisible.

The Cornell researchers created computer simulations of several different metal gyroids that could be made by copolymer self-assembly, then calculated how light would behave when passing through these materials. They concluded that such materials could have a negative refractive index in the visible and near-infrared range. They noted that the amount of refraction could be controlled by adjusting the size of the repeating features of the metamaterial, which can be done by modifying the chemistry used in self-assembly.

They tried their calculations assuming the metal structures might be made of gold, silver or aluminum, and found that only silver produced satisfactory results.

Could these materials actually be made? According to graduate student Kahyun Hur, lead author on the paper, "We're working on it."

Hur's research is supported by the King Abdullah University of Science and Technology. Other aspects of the work have been funded by the National Science Foundation and the Computational Center for Nanotechnology Innovation at Rensselaer Polytechnic Institute.

####

For more information, please click here

Contacts:
Media Contact:
Blaine Friedlander
(607) 254-8093


Bill Steele

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Govt.-Legislation/Regulation/Funding/Policy

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Chip Technology

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Memory Technology

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Self Assembly

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Materials/Metamaterials/Magnetoresistance

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Disposable electronics on a simple sheet of paper October 7th, 2022

Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project