Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Chemically assembled metamaterials could lead to superlenses and cloaking

Wiesner Lab
Two polymer molecules linked together will self-assemble into a complex shape, in this case a convoluted "gyroid." One of the polymers is chemically removed, leaving a mold that can be filled with metal. Finally the other polymer is removed, leaving a metal gyroid with features measured in nanometers.
Wiesner Lab

Two polymer molecules linked together will self-assemble into a complex shape, in this case a convoluted "gyroid." One of the polymers is chemically removed, leaving a mold that can be filled with metal. Finally the other polymer is removed, leaving a metal gyroid with features measured in nanometers.

Abstract:
Nanomanufacturing technology has enabled scientists to create metamaterials -- stuff that never existed in nature -- with unusual optical properties. They could lead to "superlenses" able to image proteins, viruses and DNA, and perhaps even make a "Star Trek" cloaking device.

Chemically assembled metamaterials could lead to superlenses and cloaking

Ithaca, NY | Posted on November 1st, 2011

Other metamaterials offer unique magnetic properties that could have applications in microelectronics or data storage.

The limitation, so far, is that techniques like electron-beam lithography or atomic sputtering can only create these materials in thin layers. Now Cornell researchers propose an approach from chemistry to self-assemble metamaterials in three dimensions.

Uli Wiesner, the Spencer T. Olin Professor of Engineering, and colleagues present their idea in the online edition of the journal Angewandte Chemie.

Wiesner's research group offers a method they have pioneered in other fields, using block copolymers to self-assemble 3-D structures with nanoscale features.

A polymer is made up of molecules that chain together to form a solid or semisolid material. A block copolymer is made by joining two polymer molecules at the ends so that when each end chains up with others like itself, the two solids form an interconnected pattern of repeating geometric shapes -- planes, spheres, cylinders or a twisty network called a gyroid. Elements of the repeating pattern can be as small as a few nanometers across. Sometimes tri-polymers can be used to create even more complex shapes.

After the structure has formed, one of the two polymers can be dissolved away, leaving a 3-D mold that can be filled with a metal -- often gold or silver. Then the second polymer is burned away, leaving a porous metal structure.

In their paper the researchers propose to create metal gyroids that allow light to pass through, but are made up of nanoscale features that interact with light, just as the atoms in glass or plastic do. In this way, they say, it should be possible to design materials with a negative index of refraction, that is, materials that bend light in the opposite direction than in an ordinary transparent material.

Special lenses made of such a material could image objects smaller than the wavelength of visible light, including proteins, viruses and DNA. Some experimenters have made such superlenses, but so far none that work in the visible light range. Negative refraction materials might also be configured to bend light around an object -- at least a small one -- and make it invisible.

The Cornell researchers created computer simulations of several different metal gyroids that could be made by copolymer self-assembly, then calculated how light would behave when passing through these materials. They concluded that such materials could have a negative refractive index in the visible and near-infrared range. They noted that the amount of refraction could be controlled by adjusting the size of the repeating features of the metamaterial, which can be done by modifying the chemistry used in self-assembly.

They tried their calculations assuming the metal structures might be made of gold, silver or aluminum, and found that only silver produced satisfactory results.

Could these materials actually be made? According to graduate student Kahyun Hur, lead author on the paper, "We're working on it."

Hur's research is supported by the King Abdullah University of Science and Technology. Other aspects of the work have been funded by the National Science Foundation and the Computational Center for Nanotechnology Innovation at Rensselaer Polytechnic Institute.

####

For more information, please click here

Contacts:
Media Contact:
Blaine Friedlander
(607) 254-8093


Bill Steele

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Memory Technology

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Self Assembly

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Disposable electronics on a simple sheet of paper October 7th, 2022

Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project