Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Research and Markets: Optical Properties of Nanostructures

Abstract:
Research and Markets (www.researchandmarkets.com/research/6427ec/optical_properties) has announced the addition of the "Optical Properties of Nanostructures" book to their offering.

Research and Markets: Optical Properties of Nanostructures

Dublin, Ireland | Posted on October 25th, 2011

"This book offers an excellent insight into the optical property of functional nanostructures that is one of the frontiers of photonics, materials, physics, chemistry and nanotechnology. The elegant treatment of electrons and photons in nanostructures using the first-principles quantum mechanical theories, as well as the broad coverage from basic structures to passive components and active devices, makes it a unique reference for scientists and students interested in this area." Prof. Limin Tong - Zhejiang University, China

Nanotechnology has been named as one of the most important areas of forthcoming technology because it promises to form the basis of future generations of electronic and optoelectronic devices. From the point of view of technical physics, all these developments greatly reduce the geometric sizes of devices, and thus the number of active electrons in the system. Quantum mechanical considerations about electronic states, electron transports, and various scattering processes, including light-matter interaction, are thus crucial. However, the theoretical study is extremely difficult. The authors' first numerical simulation work about a three-dimensional energy band structure calculation in 1995 took more than 6 months to complete for one bias configuration of a nanoscale metal-oxide-semiconductor field-effect transistor. With today's computation workstations the CPU time is reduced to less than 24 hours.

This book discusses electrons and photons in and through nanostructures by the first-principles quantum mechanical theories and fundamental concepts (a unified coverage of nanostructured electronic and optical components) behind nanoelectronics and optoelectronics, the material basis, physical phenomena, device physics, as well as designs and applications.

The combination of viewpoints presented in the book can help foster further research and cross-disciplinary interaction needed to surmount the barriers facing future generations of technology design.

Authors

Ying Fu
Min Qiu

Key Topics Covered:

Electrons in Nanostructures
Light-Matter Interactions
Exciton and Exciton Photogeneration
Exciton Polariton
Optoelectronic Devices
Basics of Plasmonics
Surface Plasmonics Devices

####

For more information, please click here

Contacts:
Research and Markets
Laura Wood
Senior Manager

U.S. Fax: 646-607-1907
Fax (outside U.S.): +353-1-481-1716

Copyright © Business Wire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Photonics/Optics/Lasers

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project