Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Hydrogen released to fuel cell more quickly when stored in metal nanoparticles

The TU Delft Forze IV hydrogen race car
The TU Delft Forze IV hydrogen race car

Abstract:
Researchers from TU Delft and VU University Amsterdam have demonstrated that the size of a metal alloy nanoparticle influences the speed with which hydrogen gas is released when stored in a metal hydride. The smaller the size of the nanoparticle, the greater the speed at which the hydrogen gas makes its way to the fuel cell. This knowledge can be used to improve the efficiency of hydrogen storage in vehicles, which brings the large-scale implementation of clean hydrogen-powered vehicles another step closer. The researchers publish their findings in the October issue of the scientific journal Advanced Energy Materials.

Hydrogen released to fuel cell more quickly when stored in metal nanoparticles

The Netherlands | Posted on September 30th, 2011

Hydrogen heaven

On 27 September Dutch Minister of Infrastructure and the Environment, Ms Schultz van Haegen, announced she will earmark 5 million Euros to stimulate hydrogen transport in the Netherlands. According to the Minister the Netherlands and neighbouring countries have all it takes to become a ‘hydrogen heaven'. In July 2011, the German car manufacturer Daimler announced its intention to build twenty new hydrogen fuelling stations along Germany's motorways. Hydrogen is back on the agenda. Hydrogen gas is currently stored in a vehicle fuel tank at 700 bar pressure. Fuelling stations thus require high-pressure pumps to fill these tanks and these systems consume a lot of energy.

Magnesium

There are thus good reasons for finding alternative hydrogen storage techniques. Hydrogen can be absorbed in high densities in metals such as magnesium, without the need for high pressure. However, the disadvantage is that releasing the hydrogen again is a very difficult and very slow process. One way of speeding up the release of the hydrogen is to use magnesium nanoparticles that are fixed in a matrix to prevent them from aggregating.

Nanoparticles in a matrix

Professor of Materials for Energy Conversion and Storage, Bernard Dam, and his colleagues at TU Delft and VU University Amsterdam have demonstrated experimentally that the interaction between the nanoparticles and the matrix can cause the hydrogen gas to be released faster. Using models consisting of thin layers of magnesium and titanium, they show how the pressure of the hydrogen being released from the magnesium increases as the layers become thinner. This means that it indeed makes sense to store hydrogen in nanoparticles in a matrix. The choice of matrix determines to what extent the hydrogen desorption pressure increases. The researchers published their findings in the October 2011 edition of the scientific journal Advanced Energy Materials.

Hybrid

Efficient and affordable hydrogen storage techniques can play an important role in the large-scale adoption of hydrogen fuel cells. Bernard Dam foresees the development of hybrid vehicles that use batteries for short distances but switch to hydrogen for long distances: ‘Your electric motor will be powered by batteries inside the city, and by hydrogen when you go further afield.'

The research was funded by the ACTS Sustainable Hydrogen Program of the Netherlands Organisation for Scientific Research.

Full bibliographic informationLennard P.A. Mooij, Andrea Baldi, Christiaan Boelsma, Kun Shen, Marnix Wagemaker, Yevheniy Pivak, Herman Schreuders, Ronald Griessen, Bernard Dam. Interface Energy Controlled Thermodynamics of Nanoscale Metal Hydrides.Advanced Energy Materials. Volume 1, issue 5, pages 754-758, October 2011.

####

For more information, please click here

Contacts:
Bernard Dam
Professor of Materials for Energy Conversion and Storage
Faculty of Applied Sciences
TU Delft
+31 (0) 15 278 4342


Ineke Boneschansker, science information officer at TU Delft. +31 (0) 15 278 8499,

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Automotive/Transportation

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Fuel Cells

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

Research partnerships

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project