Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A new way to go from nanoparticles to supraparticles

“There’s a delicate balance you have to strike,” said Argonne physicist Byeongdu Lee, who led the characterization of the supraparticles using high-energy X-rays provided by Argonne’s Advanced Photon Source. “If the attractive Van der Waals force is too strong, all the nanoparticles will smash together at once, and you’ll end up with an ugly, disordered glass. But if the repulsive Coulomb force is too strong, they’ll never come together in the first place.”
Image courtesy of Argonne National Laboratory
“There’s a delicate balance you have to strike,” said Argonne physicist Byeongdu Lee, who led the characterization of the supraparticles using high-energy X-rays provided by Argonne’s Advanced Photon Source. “If the attractive Van der Waals force is too strong, all the nanoparticles will smash together at once, and you’ll end up with an ugly, disordered glass. But if the repulsive Coulomb force is too strong, they’ll never come together in the first place.”

Image courtesy of Argonne National Laboratory

Abstract:
Controlling the behavior of nanoparticles can be just as difficult trying to wrangle a group of teenagers. However, a new study involving the U.S. Department of Energy's Argonne National Laboratory has given scientists insight into how tweaking a nanoparticle's attractive electronic qualities can lead to the creation of ordered uniform "supraparticles."

A new way to go from nanoparticles to supraparticles

Argonne, IL | Posted on September 19th, 2011

"There's a delicate balance you have to strike," said Argonne physicist Byeongdu Lee, who led the characterization of the supraparticles using high-energy X-rays provided by Argonne's Advanced Photon Source. "If the attractive Van der Waals force is too strong, all the nanoparticles will smash together at once, and you'll end up with an ugly, disordered glass. But if the repulsive Coulomb force is too strong, they'll never come together in the first place."

Researchers from the University of Michigan and China also collaborated on the study.

This problem of trying to achieve the right kind of balance has underpinned an entire field of colloidal research, according to Lee. But even if the right equilibrium is struck to promote the slow, steady growth of a supraparticle, up until now researchers have still had very little way of controlling the size of the particle that would grow. "If you were able to make the attractive force just a little stronger than the repulsive force, you'd see the growth of a crystal—but you wouldn't be able to dictate how big it grew," he said.

The Argonne research focused on finding a way for a supraparticle to automatically stop its own growth. Such a condition could only occur if the net attractive force of the nanoparticles toward the inside of the supraparticle was greater than that of the net attractive force of the nanoparticles that formed the edge of the supraparticle—a so-called "core-shell morphology."

Although core-shell morphologies had been observed in previous research, those earlier studies had concentrated on the types of supraparticles created by "monodisperse" nanoparticles—those that, like marbles, would share a common size and shape. "It's easier to make individuals cluster into larger groups if they have characteristics in common than if they don't," Lee said. "It is just like high school in that way."

Instead of sticking with monodispersity, however, the Argonne research focused instead on "polydisperse" nanoparticles—those with a wide variety of sizes, masses, and configurations. "The advantage with our technique is that there's no longer a need for monodispersity. You can mix two different components—like a metal and a semiconductor—and still see the same kind of controlled self-limiting assembly."

Although the research into supraparticles born from polydisperse collections of nanoparticles is still in its infancy, Lee and his colleagues believe that the methodology could find its way into a number of different applications, perhaps ranging from optics to drug delivery to photovoltaics. "When you work in nanotechnology, we have to ask ‘can we do this?' before we really know what our discovery will be useful for," explained Lee. "We hope that further investigation will open up new lines of discovery that we have not even conceived of yet."

An article based on the research appears in the September 2011 issue of Nature Nanotechnology. The research was funded by the Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science, the U.S. Department of Defense, and the National Science Foundation, among others.

By Jared Sagoff

####

About Argonne National Laboratory
rgonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please click here

Contacts:
Jared Sagoff
630/252-5549

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Follow Argonne on Twitter at:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Physics

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Finding quantum order in chaos May 17th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project