Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Superconductors and X-ray beams: the drawing shapes

Abstract:
An Italian-British team of scientists has succeeded in drawing superconducting shapes using an X-ray beam. Presented in the journal Nature Materials, the study shows how being able to create and control tiny superconducting structures could lead to innovative electronic devices. The research was funded in part by COMEPHS ('Controlling mesoscopic phase separation'), a project supported by the EU. COMEPHUS was backed under the 'Nanotechnologies and nanosciences, knowledge-based multifunctional materials and new production processes and devices' (NMP) Thematic area of the EU's Sixth Framework Programme (FP6) to the tune of EUR 3.18 million.

Superconductors and X-ray beams: the drawing shapes

Brussels, Belgium | Posted on September 14th, 2011

Researchers from the London Centre for Nanotechnology in the United Kingdom and Sapienza University of Rome in Italy have successfully manipulated regions of high temperature superconductivity, in a material that combines oxygen, copper and a heavier element called lanthanum, at the Elettra (Trieste) synchrotron radiation facility. Superconductivity, say experts, is a special state where a material conducts electricity with no resistance. In essence, zero energy is wasted.

According to the researchers, high temperature superconductivity is triggered when oxygen atoms in the material are re-arranged thanks to X-rays being illuminated. This type was first discovered by scientists a quarter of a century ago. Shapes can be drawn in two dimensions when the X-ray beam is used like a pen.

The researchers could also erase structures by applying heat treatments. So not only do the tools allow them to write/draw with high precision, but they can also erase with just a few easy steps and without any chemicals. They say rearranging the underlying structure of a material can be applied to other compounds containing metal atoms and oxygen. Fuel cells and catalysts are an example.

'Our validation of a one-step, chemical-free technique to generate superconductors opens up exciting new possibilities for electronic devices, particularly in re-writing superconducting logic circuits,' says co-author Professor Gabriel Aeppli of the London Centre for Nanotechnology and the Department of Physics and Astronomy, University College London. 'Of profound importance is the key to solving the notorious 'travelling salesman problem', which underlies many of the world's great computational challenges. We want to create computers on demand to solve this problem, with applications from genetics to logistics. A discovery like this means a paradigm shift in computing technology is one step closer.'

Commenting on the results, co-author Professor Antonio Bianconi of Sapienza University in Rome says: 'It is amazing that in a few simple steps, we can now add superconducting 'intelligence' directly to a material consisting mainly of the common elements copper and oxygen.'

####

For more information, please click here

Copyright © European Commission

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

University College London:

Nature Materials:

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Superconductivity

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Chip Technology

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project