Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Novel Developments for Semiconductor Quantum Dots

September 11th, 2011

Novel Developments for Semiconductor Quantum Dots

Abstract:
Semiconductor quantum dots (QDs) are nanoparticles or nanorods made of a semiconductor material. Because of their unique properties, they can be used in many fields, such as medicine and electronics. Here, we give a description of how QDs work and of some of their most novel applications.
Semiconductors

A material behaves as a semiconductor when its electrical conductivity is in between that of an insulator and that of a conductor.

The mechanism of the conductivity in a semiconductor is shown in the Figure below. Electrons, normally in the valence band, have to be promoted into the conduction band; for this to happen, an appropriate amount of energy has to be absorbed by the material. This value, called the band gap, is different depending on the material.
Nano-dimensions

The peculiarity of QDs is that they combine their semiconductor properties with

Valance and conduction bands in a semiconductor. Photo by mitopensourseware

those of a nanomaterial.

A nanomaterial is a material having at least one dimension in the order of nanometers (10-9 m), this usually meaning smaller than about 100 nm. Examples are nanoparticles (particles with a nanoscale diameter), nanorods (rods with all dimensions in the nanoscale) or nanofibres (fibers with a nanoscale diameter), and nanofilms (thin films with a nanoscale thickness). Due to their small dimensions, the properties of nanomaterials are normally different from those of the corresponding bulk material.

Source:
decodedscience.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Chip Technology

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Quantum Dots/Rods

A new kind of magnetism November 17th, 2023

IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project