Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > NIST Uncovers Reliability Issues for Carbon Nanotubes in Future Electronics

Micrograph of recession and clumping in gold electrodes after NIST researchers applied 1.7 volts of electricity to the carbon nanotube wiring for an hour. The NIST reliability tests may help determine whether nanotubes can replace copper wiring in next-generation electronics.
Credit: M. Strus/NIST
Micrograph of recession and clumping in gold electrodes after NIST researchers applied 1.7 volts of electricity to the carbon nanotube wiring for an hour. The NIST reliability tests may help determine whether nanotubes can replace copper wiring in next-generation electronics.

Credit: M. Strus/NIST

Abstract:
Carbon nanotubes offer big promise in a small package. For instance, these tiny cylinders of carbon molecules theoretically can carry 1,000 times more electric current than a metal conductor of the same size. It's easy to imagine carbon nanotubes replacing copper wiring in future nanoscale electronics.

NIST Uncovers Reliability Issues for Carbon Nanotubes in Future Electronics

Boulder, CO | Posted on August 17th, 2011

But—not so fast. Recent tests at the National Institute of Standards and Technology (NIST) suggest device reliability is a major issue.

Copper wires transport power and other signals among all the parts of integrated circuits; even one failed conductor can cause chip failure. As a rough comparison, NIST researchers fabricated and tested numerous nanotube interconnects between metal electrodes. NIST test results, described at a conference this week,* show that nanotubes can sustain extremely high current densities (tens to hundreds of times larger than that in a typical semiconductor circuit) for several hours but slowly degrade under constant current. Of greater concern, the metal electrodes fail—the edges recede and clump—when currents rise above a certain threshold. The circuits failed in about 40 hours.

While many researchers around the world are studying nanotube fabrication and properties, the NIST work offers an early look at how these materials may behave in real electronic devices over the long term. To support industrial applications of these novel materials, NIST is developing measurement and test techniques and studying a variety of nanotube structures, zeroing in on what happens at the intersections of nanotubes and metals and between different nanotubes. "The common link is that we really need to study the interfaces," says Mark Strus, a NIST postdoctoral researcher.

In another, related study published recently,** NIST researchers identified failures in carbon nanotube networks—materials in which electrons physically hop from tube to tube. Failures in this case seemed to occur between nanotubes, the point of highest resistance, Strus says. By monitoring the starting resistance and initial stages of material degradation, researchers could predict whether resistance would degrade gradually—allowing operational limits to be set—or in a sporadic, unpredictable way that would undermine device performance. NIST developed electrical stress tests that link initial resistance to degradation rate, predictability of failure and total device lifetime. The test can be used to screen for proper fabrication and reliability of nanotube networks.

Despite the reliability concerns, Strus imagines that carbon nanotube networks may ultimately be very useful for some electronic applications. "For instance, carbon nanotube networks may not be the replacement for copper in logic or memory devices, but they may turn out to be interconnects for flexible electronic displays or photovoltaics," Strus says.

Overall, the NIST research will help qualify nanotube materials for next-generation electronics, and help process developers determine how well a structure may tolerate high electric current and adjust processing accordingly to optimize both performance and reliability.

* M.C. Strus, R.R. Keller and N. Barbosa III. Electrical reliability and breakdown mechanisms in single-walled carbon nanotubes. Paper presented at IEEE Nano 2011, Portland, Ore., Aug. 17, 2011.

** M.C. Strus, A.N. Chiaramonti, Y.L. Kim, Y.J. Jung and R.R. Keller. Accelerated reliability testing of highly aligned single-walled carbon nanotube networks subjected to dc electrical stressing. Nanotechnology 22 pp. 265713 (2011).

####

About NIST
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Laura Ost
303-497-4880

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Laboratories

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Flexible Electronics

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Chip Technology

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Memory Technology

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Energy

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Solar/Photovoltaic

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project