Home > Press > A Physical Route to Highly Crystalline Graphene
![]() |
Abstract:
From sensors to solar cells, graphene has a range of exciting applications. Most rely on the ideal 2-dimensional structure of graphene, composed entirely of carbon hexagons, which gives graphene its excellent electrical and chemical properties.
The production of high quality graphene sheets is a pressing concern. One approach is to use graphite oxide. However, it must be chemically reduced in order to improve its conductivity. One side effect is the presence of impurities that reduced the crystallinity and electrical conductivity.
Prof. Y. H. Lee and coworkers have used a physical rather than chemical approach to obtain crystalline graphene sheets. They exfoliated graphite oxide in water-based solution and then annealed the resulting sheets at high temperature (1900°C) and under high vacuum.
They obtained graphene sheets with a minimal oxygen content (no oxygen peak was observed using XPS) and high conductivity (56 000 S m-1), higher than samples produced using chemical reduction techniques.
####
For more information, please click here
Copyright © John Wiley & Sons
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Graphene/ Graphite
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Sensors
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |