Home > News > Video: Michael McAlpine on piezoelectric power generation for implantable devices
July 20th, 2011
Video: Michael McAlpine on piezoelectric power generation for implantable devices
Abstract:
Integrating highly efficient energy conversion materials onto stretchable and biocompatible substrates could yield breakthroughs in implantable biomechanical energy harvesting systems.
The development of a method for integrating highly efficient energy conversion materials onto stretchable and biocompatible substrates could yield breakthroughs in implantable biomechanical energy harvesting systems. Piezoelectric nanomaterials represent a particularly interesting class of smart materials due to their highly efficient electromechanical coupling. The McAlpine Research Group at Princeton University has developed new methods for the synthesis and fabrication of piezoelectric nanomaterials, their integration onto alternative substrates such as stretchable elastomers, and fundamental investigations into enhanced piezoelectric responses under conditions induced by strain and confinement.
Source:
spie.org
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Videos/Movies
New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022
Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||