Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Turning agents of disease into tools for health and better living: New book explores research into viral nanoparticles

Abstract:
Viruses that attack plants, insects, mammals and bacteria are proving effective platforms for delivering medicines and imaging chemicals to specific cells in the body, as building blocks for tiny battery electrodes and computer data storage devices, and other nanotechnologies.

Turning agents of disease into tools for health and better living: New book explores research into viral nanoparticles

Cleveland, OH | Posted on June 30th, 2011

The burst of research over the last two decades, with explanations aimed at undergraduate and graduate college students and scientists within and outside the field, is described in a new book written by Nicole Steinmetz, an assistant professor of biomedical engineering at Case Western Reserve University, and Marianne Manchester, a professor of pharmacy and pharmaceutical sciences at the University of California at San Diego.

The textbook, Viral Nanoparticles: Tools for Materials Science and Biomedicine, summarizes the work done by engineers, chemists, physicists, materials scientists, medical researchers and others; the viruses used and the applications. The book is available now.

"The field is rapidly expanding, with people from more and more backgrounds coming into it," said Steinmetz, who has been manipulating viruses since she was an undergraduate researcher. Earlier in her career she created multilayered thin film arrays made of multiple 3-dimensional viral nanoparticles for use in sensors or nanoelectronics, but is now focusing on the application of plant viruses for medical use, such as cancer detection and imaging and targeted drug delivery.

Manchester has long specialized in the interface between viral nanoparticles and physiologic systems, defining the ways that viruses interact with cell surfaces and organs within the body. "The field is now poised to move forward toward commercial and clinical applications," she said. "The book provides an overview of these challenges and opportunities".

Viruses are finding a wide range of uses in nanoscience and nanotechnology, because of a host of practical traits, she explains. Viruses are already nano-sized - 100,000s of times smaller than the width of a human hair. Their structures have been optimized by nature, physically and chemically each unit of the same strain of virus is identical, they're cheap and easy to produce and they easily self-assemble into two-and three-dimensional structures.

The infectious agents are also stable, hardy and biocompatible.

The book details how researchers have mineralized viruses to produce nanowires used in nanoelectronics, and build thin-film micro-arrays. The authors explain how scientists have rendered the infectious agents benign, as well as genetically or chemically altered versions for specific uses.

They tell how they and others have modified the surfaces of viral nanoparticles to link up with targets, such as tumor cells, and modified their interiors to carry medicines, fluorescent chemicals used in imaging applications, or other cargo.

Viral Nanoparticles is published by Pan Stanford Publishing, Pte., Ltd., of Singapore. The book is available through Pan Stanford and on Amazon.com.

####

For more information, please click here

Contacts:
Kevin Mayhood

216-368-4442

Copyright © Case Western Reserve University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Self Assembly

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Sensors

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project