Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > High-energy density magnesium batteries for smart electrical grids

Abstract:
Magnesium-based batteries are, in theory, a very attractive alternative to other batteries. Magnesium (Mg) is cheap, safe, lightweight, and its compounds are usually non-toxic. Mg is less expensive (metallic lithium [Li] costs about 24 times more than metallic Mg) because Mg is abundant in the Earth's crust. Mg is safer because it is stable when exposed to the atmosphere.

High-energy density magnesium batteries for smart electrical grids

Morgantown, WV | Posted on June 27th, 2011

Mg provides a theoretical specific capacity of 2,205 ampere-hours/kilogram, making it an attractive high-energy density battery system. Furthermore, it provides two electrons per atom and has electrochemical characteristics similar to Li (12 grams-per-Faraday [g/F], compared to 7 g/F for Li or 23 g/F for sodium). Proper design and architecture should lead to Mg-based batteries with energy densities of 400-1,100 watt-hour per kilogram for an open circuit voltage in the range of 0.8 - 2.1 V, which would make it an attractive candidate for electrical grid energy storage and stationary back-up energy. To make Mg-based batteries practical, researchers at DOE's National Energy Technology Laboratory are developing novel alloys of Mg doped with different elements such as calcium, zinc, and yttrium. These alloys are being produced by melting and casting as well as powder metallurgy. A new displacement reaction hypothesis, based on the reaction of nanostructured transition metal compounds with Mg, has resulted in a thermodynamically favorable reversible displacement reaction of transition metals and Mg-alloys. Recent accomplishments include a new, intermetallic anode compound formulated by melting/casting and synthesis of a new MgMn1-xFexSiO4/C composite, and other transition metal oxide spinel cathode systems. Mg-based electrolytes and other ionic electrolytes have also been developed and are being tested.

####

About DOE
The National Energy Technology Laboratory (NETL), part of DOE’s national laboratory system, is owned and operated by the U.S. Department of Energy (DOE). NETL supports DOE’s mission to advance the national, economic, and energy security of the United States.

NETL implements a broad spectrum of energy and environmental research and development (R&D) programs that will return benefits for generations to come:

Enabling domestic coal, natural gas, and oil to economically power our Nation’s homes, industries, businesses, and transportation …
While protecting our environment and enhancing our energy independence.

NETL has expertise in coal, natural gas, and oil technologies, contract and project management, analysis of energy systems, and international energy issues.

In addition to research conducted onsite, NETL’s project portfolio includes R&D conducted through partnerships, cooperative research and development agreements, financial assistance, and contractual arrangements with universities and the private sector. Together, these efforts focus a wealth of scientific and engineering talent on creating commercially viable solutions to national energy and environmental problems.

For more information, please click here

Contacts:
3610 Collins Ferry Road
P.O. Box 880
Morgantown, WV 26507-0880
Receptionist, Bldg B26
304-285-4764

412-386-4646

Media Inquiries
Linda Morton
304.285.4543

Copyright © DOE

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project