Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Imec develops procedure for carrier profiling in nanowire-based transistors

Quantitative 2D-carrier distribution for nanowire diameters of 400nm and 100nm. The difference in drain doping is reflected in the TFET off current.
Quantitative 2D-carrier distribution for nanowire diameters of 400nm and 100nm. The difference in drain doping is reflected in the TFET off current.

Abstract:
Imec's researchers have developed a methodology to quantitatively map the distribution of active dopants in confined 3D-volumes. This is an important step towards in-depth understanding of transistors based on semiconductor nanowires. The new methodology is based on high-vacuum scanning spreading resistance microscopy (HV-SSRM).

Imec develops procedure for carrier profiling in nanowire-based transistors

Leuven, Belgium | Posted on June 16th, 2011

Semiconductor nanowires are one of the most promising building blocks for future nanoelectronic devices such as transistors, sensors and solar cells. Nanowire-based tunnel field-effect transistors (TFETs), for example, are widely seen as potential successors of standard MOSFETs, due to the absence of a 60mV/dec sub-threshold swing limitation and reduced short-channel effects.

But to optimize the fabrication processes for such high-performance devices, it is necessary to have a thorough understanding of the active dopant (carrier) distribution. Therefore, researchers from imec have recently extended the applicability of HV-SSRM as a metrology tool for carrier mapping to fully integrated nanowire-based transistors.

Applying HV-SSRM to Si-nanowire-based tunnel-FETs, the team identified a diameter-dependent dopant-deactivation mechanism. This mechanism occurs in small 3D structures only and cannot be predicted using standard process simulation tools. It could be shown experimentally and through device simulations that this phenomenon directly impacts the device characteristics. The validity of the technique is proved by the observance of the diameter dependency of the carrier distribution in the nanowire top-section. This results from a tilted ion implantation step and is perfectly in agreement with results from process simulations.

Scanning spreading resistance microscopy (SSRM) is a technique with a unique combination of high spatial resolution (1 to 3nm) and high sensitivity. SSRM is based on atomic force microscopy and was invented by W. Vandervorst et al. at imec in 1994. During the last decade, it has evolved into the method of choice for carrier profiling in planar MOS transistors. With this work, imec applied HV-SSRM to Si-nanowire-based tunnel-FETs, proving its validity to study carrier distribution in semiconductor nanowires. It also showed that HV-SSRM is capable of revealing physical phenomena which are present in small, 3D structures only, and which cannot be predicted by blanket experiments. Such information is essential for the process development of future nanowire-based devices.

This study has been published in Nanotechnology - issue 18 (volume 22). An illustration from the study was selected for the cover of the journal.

The paper can be accessed on iopscience.iop.org/0957-4484/22/18/185701.

####

About Imec
Imec performs world-leading research in nano-electronics and nano-technology. Its staff of more than 1,900 people includes over 500 industrial residents and guest researchers. Imec’s research is applied in better healthcare, smart electronics, sustainable energy, and safer transport.

For more information, please click here

Contacts:
Barbara Kalkis
Maestro Marketing & PR

Copyright © Imec

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Sensors

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Nanoelectronics

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Tools

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project