Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > University of Houston develops method for creating single-crystal arrays of graphene: New method marks advance in efforts to develop a replacement for silicon in high-performance electronics

Abstract:
University of Houston researchers have developed a method for creating single-crystal arrays of the material graphene, an advance that opens the possibility of a replacement for silicon in high-performance computers and electronics. The work by UH researchers and their collaborators is featured on the cover of the June issue of Nature Materials.

University of Houston develops method for creating single-crystal arrays of graphene: New method marks advance in efforts to develop a replacement for silicon in high-performance electronics

Houston, TX | Posted on June 2nd, 2011

Graphene is a one-atom-thick layer of carbon that was first fabricated in 2004. Single-crystal arrays of the material could be used to create a new class of high-speed transistors and integrated circuits that use less energy than silicon electronics because graphene conducts electricity with little resistance or heat generation.

But the industry needs a reliable and defect-free method for manufacturing large quantities of single crystals of graphene. The development reported in Nature Materials marks a step towards perfecting such a method.

"Using these seeds, we can grow an ordered array of thousands or millions of single crystals of graphene," said Qingkai Yu, the paper's first author. Yu developed the single-crystal growth process at the UH Center for Advanced Materials (CAM), where he was a research assistant professor of electrical and computer engineering.

"We hope the industry will look at these findings and consider the ordered arrays as a possible means of fabricating electronic devices," said Yu, who is now an assistant professor at Texas State University in San Marcos and remains a project leader at CAM.

Yu and Steven Pei, UH professor of electrical and computer engineering and CAM's deputy director, invented the graphene seeded-growth technique that UH patented in 2010.

"There is still a long way to go. However, this development makes the fabrication of integrated circuits with graphene transistors possible. This may actually be the first viable integrated circuit technology based on nano-electronics," Pei said.

Yong P. Chen, an assistant professor of nanoscience and physics at Purdue University, was the paper's co-corresponding author.

At CAM, single-crystal graphene arrays were grown on top of a copper foil inside a chamber containing methane gas using a process called chemical vapor deposition. This process was pioneered by Yu at CAM in 2008 and is now widely accepted as the standard method to create large-area graphene films for potential applications in touch-screen displays, e-books and solar cells.

"Graphene isn't there yet, in terms of high quality mass production like silicon, but this is a very important step in that direction," said Chen, who led the graphene characterization efforts at Purdue.

In addition to Yu and Pei, UH graduate students Wei Wu and Zhihua Su, postdoctoral researchers Zhihong Liu and Peng Peng and assistant professor Jiming Bao along with Chen and nine other researchers from Purdue University, Brookhaven National Laboratory, Argonne National Laboratories and Carl Zeiss SMT Inc. co-authored the paper.

Last year, two scientists received the Nobel Prize in physics for discovering graphene. At that time, Yu was working at CAM to develop ways to produce mass quantities of high-quality graphene.

The findings reported in Nature Materials demonstrated that researchers could control the growth of the ordered arrays. The researchers also were the first to demonstrate the electronic properties of individual grain boundaries.

The research was supported through a variety of funding sources, including the National Science Foundation, the U.S. Department of Energy, the Department of Homeland Security, the Defense Threat Reduction Agency, IBM Inc., the Welch Foundation, the Miller Family Endowment and Midwest Institute for Nanoelectronics Discovery.

####

For more information, please click here

Contacts:
Laura Tolley

713-743-0778

Copyright © University of Houston

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Graphene/ Graphite

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Govt.-Legislation/Regulation/Funding/Policy

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Chip Technology

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project