Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanomedicine One Step Closer to Reality

Abstract:
A class of engineered nanoparticles—gold-centered spheres smaller than viruses—has been shown safe when administered by two alternative routes in a mouse study led by investigators at the Stanford University Medical School. This marks the first step up the ladder of toxicology studies that, within a year and a half, could yield to human trials of the tiny agents for detection of colorectal and possibly other cancers.

Nanomedicine One Step Closer to Reality

Bethesda, MD | Posted on May 29th, 2011

"These nanoparticles' lack of toxicity in mice is a good sign that they'll behave well in humans," said Dr. Sanjiv Sam Gambhir, co-principal investigator of the Stanford University Center of Cancer Nanotechnology Excellence and leader of this study. Dr. Gambhir's team published its results in the journal Science Translational Medicine.

"Early detection of any cancer, including colorectal cancer, markedly improves survival," said Dr. Gambhir. For example, the widespread use of colonoscopy has significantly lowered colon-cancer mortality rates, he said. "But colonoscopy relies on the human eye. So this screening tool, while extremely useful, still misses many cancer lesions such as those that are too tiny, obscure, or flat to be noticed."

A promising way to catch cancer lesions early is to employ molecular reporters that are attracted to malignant sites. One method in use involves fluorescent dyes coupled with antibodies that recognize and bind to surface features of cancer cells. But that approach has its drawbacks, said Dr. Gambhir. The body's own tissues also fluoresce slightly, complicating attempts to pinpoint tumor sites. Plus, the restricted range of colors at which antibody-affixed dyes fluoresce limits the number of different tumor-associated features that can be simultaneously identified. Some versions of this approach have also proved toxic to cells.

The new study is the first-ever successful demonstration of the safety of a new class of agents - gold nanoparticles that have been coated with materials designed to be detected with very high sensitivity, then encased in see-through silica shells and bound to polyethylene glycol molecules to make them more biologically friendly. Molecules that home in on cancer cells can be affixed to them. The resulting nanoparticles measure a mere 100 nanometers in diameter.

The materials surrounding the nanoparticles' gold centers have special, if subtle, optical properties. Typically, light bounces off of a material's surface at the same wavelength it had when it hit the surface. But in each of the specialized materials, about one ten-millionth of the incoming light bounces back in a pattern of discrete wavelengths characteristic of that material. The underlying gold cores have been roughed up in a manner that greatly amplifies this so-called "Raman effect," allowing the simultaneous detection of many different imaging materials by a sensitive instrument called a Raman microscope.

Nanoparticles of this type were originally used in currency inks to make them difficult to counterfeit. But Dr. Gambhir's laboratory, in collaboration with Oxonica Materials, has adapted them for biological use. "Photoimaging with these nanoparticles holds the promise of very early disease detection, even before any gross anatomical changes show up, without physically removing any tissue from the patient," said Dr. Gambhir. But until now, there has been no proof these particles won't be toxic. The potential effects of anything so small it can be taken up by cells can't be taken for granted.

To see if this concern could be put to rest, the investigators administered the nanoparticles to two groups of mice, each consisting of 30 male and 30 female animals, and assessed toxicity in a variety of ways. In each case, the dose was 1,000 times as large as would be required to get a clear signal from the nanoparticles.

The first group of 60 mice received the nanoparticles rectally. The researchers followed up with a series of measurements at five different time points ranging from five minutes to two weeks. They monitored the test animals' blood pressure, electrocardiograms and white-blood-cell counts. They examined several tissues for increases in the expression of antioxidant enzymes or pro-inflammatory signaling proteins, which would suggest physiological stress on the animals' cells. They stained tissues with dyes that flag dying cells.

These inspections yielded virtually no signs of stress to any tissues, and none at all by two weeks after the time of administration. Importantly, the team inspected tissues via electron microscopy to find out where the gold-containing particles had lodged themselves. They found no gold anywhere outside the bowel, indicating that the nanoparticles remained confined to that organ and thus, when rectally administered, posed no threat of systemic toxicity. Furthermore, the nanoparticles were quickly excreted. "That lowers the bar for testing of these agents by the Food and Drug Administration for use in detecting colorectal cancers, because it addresses worries about systemic toxicity," Dr. Gambhir explained.

However, even if the nanoparticles had moved beyond the bowel, it seems they would have caused no systemic problems. On administering the nanoparticles intravenously to the second group of 60 mice, the investigators once again found scant signs of inflammation or other evidence of toxicity, and virtually none by two weeks after administration. The intravenously administered nanoparticles were rapidly sequestered by scavenger cells resident in organs such as the liver and spleen.

This opens the door to human tests of intravenous injections of these nanoparticles to search for tumors throughout the body. "We can attach molecules targeting breast, lung or prostate cancer to these spheres," Dr. Gambhir said. In the study, the researchers did test nanoparticles conjugated to one such targeting molecule. Again, no toxic effects were observed. Dr. Gambhir's group is now filing for FDA approval to proceed to clinical studies of the nanoparticles for the diagnosis of colorectal cancer.

####

About The National Cancer Institute (NCI)
The NCI Alliance for Nanotechnology in Cancer is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat, and prevent cancer. Through its programs and initiatives, the Alliance is committed to building a community of researchers dedicated to using nanotechnology to advance the fight against cancer.

As part of the Center for Strategic Scientific Initiatives, the Alliance for Nanotechnology in Cancer works in concert with other NCI advanced technology initiatives to provide the scientific foundation and team science that is required to transform cancer research and care.

For more information, please click here

Contacts:
National Cancer Institute
Center for Strategic Scientific Initiatives

ATTN: NCI Office of Cancer Nanotechnology Research (OCNR)
Building 31, Room 10A52
31 Center Drive, MSC 2580
Bethesda, MD 20892-2580
Telephone: (301) 451-8983

Copyright © The National Cancer Institute (NCI)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - "The Fate and Toxicity of Raman-Active Silica-Gold Nanoparticles in Mice."

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project