Home > Press > Nanodots to the rescue
Abstract:
By applying the magnetic properties of iron nanodots to complex materials, a research team has overcome an obstacle to getting ultra-thin or highly strained films to perform on par with their bulk counterparts.
If the researchers are indeed successful, this work sets the stage for these exotic materials to be used in a wide range of fascinating and potentially technologically revolutionary applications, said Oak Ridge National Laboratory's Zac Ward, lead author of a paper published in Physical Review Letters. The problem lies in the fact that at low dimensions or when the material is under strain it loses the characteristics that make it valuable for use in nano-scale electronics. "What we discovered is a way to activate these materials using the magnetic properties of iron nanodots to control the electron spin and tune the behavior," Ward said.
####
For more information, please click here
Contacts:
Ron Walli
(865) 576-0226
Copyright © Newswise
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Laboratories
A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024
NRL discovers two-dimensional waveguides February 16th, 2024
Thin films
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Spintronics
Quantum materials: Electron spin measured for the first time June 9th, 2023
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |