Home > Press > Atomic-level crystal gazing: Revelation of the crystallization mechanism that enables fast writing of data to DVDs shows potential for quicker data storage in the future
Figure 1: Pulses of light alter the atomic bonds (red) in the material AIST, enabling quick storage and deletion of data.
© 2011 Masaki Takata |
Abstract:
Some 300 exabytes (3 × 1020 bytes) of information were stored in electronic media—magnetic disks and tapes or optical disks—throughout the world by 2007. Yet, the demand for electronic storage grows daily, driving an ever-increasing need to pack data into smaller volumes in quicker time. By studying how laser pulses alter the atomic structure of data-storage materials, a research team in Japan has uncovered a fundamental mechanism that could aid in the design of even faster information storage in the future1. The finding was published by Masaki Takata from the RIKEN SPring-8 Center, Harima, Shinji Kohara from the Japan Synchrotron Radiation Research Institute/SPring-8, Noboru Yamada from Panasonic Corporation and a team of scientists from Japan, Germany and Finland.
Rewritable memory, such as the random-access memory found in computers or on DVDs, is based on a phase change in specific types of materials in which the atoms change from one stable arrangement to another. Pulses of laser light can induce a phase change, a process known as ‘writing,' and the material's phase can be identified by ‘reading' its signature optical properties.
To provide the first full understanding of the atomic structure of one such phase-change material, AgInSbTe (AIST)—often used in rewritable DVDs—Takata and his colleagues combined state-of-the-art materials-analysis techniques and theoretical modeling. A pulse of light can change AIST from an amorphous state, in which the atoms are disordered, into a crystalline phase in which the atoms are form an ordered-lattice structure. This process of crystallization happens in just a few tens of nanoseconds: the faster the crystallization, the faster data can be written and erased. No-one understood, however, why phase changes in AIST were so fast.
The team's analyses and modeling showed that AIST crystallizes in a different way to other commercially available phase-change materials. They found that crystallization of AIST is a simple process: the laser light excites the bonding electrons and causes them to move. A central atom of antimony (Sb) switches between one long (amorphous) and one short (crystalline) bond without any bond breaking (Fig. 1). "We hope to verify this bond-interchange model in the near future," says Takata. "Crystallization is the storage-rate-limiting process in all phase-change materials, and an atomistic understanding of it is essential."
The researchers also discovered that the absence of cavities within the crystal structure contributes to the faster writing speeds on AIST. This contrasts starkly with the alternative material germanium antimony telluride in which 10% of lattice sites in are empty.
The corresponding author for this highlight is based at the Structural Materials Science Laboratory, RIKEN SPring-8 Center
####
For more information, please click here
Copyright © Riken Research
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Memory Technology
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Photonics/Optics/Lasers
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Single atoms show their true color July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||