Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Magnetic New Graphene Discovery Made by UMD Scientists

Schematic of a graphene transistor showing graphene (red), gold electrodes (yellow), silicon dioxide (clear) and silicon substrate (black). Inset shows the graphene lattice with vacancy defects. Vacancies (missing atoms) are shown surrounded by blue carbon atoms.
Schematic of a graphene transistor showing graphene (red), gold electrodes (yellow), silicon dioxide (clear) and silicon substrate (black). Inset shows the graphene lattice with vacancy defects. Vacancies (missing atoms) are shown surrounded by blue carbon atoms.

Abstract:
University of Maryland researchers have discovered a way to control magnetic properties of graphene that could lead to powerful new applications in magnetic storage and magnetic random access memory.

Magnetic New Graphene Discovery Made by UMD Scientists

College Park, MD | Posted on April 13th, 2011

The finding by a team of Maryland researchers, led by Physics Professor Michael S. Fuhrer of the UMD Center for Nanophysics and Advanced Materials is the latest of many amazing properties discovered for graphene.
A honeycomb sheet of carbon atoms just one atom thick, graphene is the basic constituent of graphite. Some 200 times stronger than steel, it conducts electricity at room temperature better than any other known material (a 2008 discovery by Fuhrer, et. al). Graphene is widely seen as having great, perhaps even revolutionary, potential for nanotechnology applications. The 2010 Nobel Prize in physics was awarded to scientists Konstantin Novoselov and Andre Geim for their 2004 discovery of how to make graphene.

In their new graphene discovery, Fuhrer and his University of Maryland colleagues have found that missing atoms in graphene, called vacancies, act as tiny magnets -- they have a "magnetic moment." Moreover, these magnetic moments interact strongly with the electrons in graphene which carry electrical currents, giving rise to a significant extra electrical resistance at low temperature, known as the Kondo effect. The results appear in the paper "Tunable Kondo effect in graphene with defects" in this month's issue of Nature Physics.

The Kondo effect is typically associated with adding tiny amounts of magnetic metal atoms, such as iron or nickel, to a non-magnetic metal, such as gold or copper. Finding the Kondo effect in graphene with vacancies was surprising for two reasons, according to Fuhrer.

"First, we were studying a system of nothing but carbon, without adding any traditionally magnetic impurities. Second, graphene has a very small electron density, which would be expected to make the Kondo effect appear only at extremely low temperatures," he said.

The team measured the characteristic temperature for the Kondo effect in graphene with vacancies to be as high as 90 Kelvin, which is comparable to that seen in metals with very high electron densities. Moreover the Kondo temperature can be tuned by the voltage on an electrical gate, an effect not seen in metals. They theorize that the same unusual properties of that result in graphene's electrons acting as if they have no mass also make them interact very strongly with certain kinds of impurities, such as vacancies, leading to a strong Kondo effect at a relatively high temperature.

Fuhrer thinks that if vacancies in graphene could be arranged in just the right way, ferromagnetism could result. "Individual magnetic moments can be coupled together through the Kondo effect, forcing them all to line up in the same direction," he said.

"The result would be a ferromagnet, like iron, but instead made only of carbon. Magnetism in graphene could lead to new types of nanoscale sensors of magnetic fields. And, when coupled with graphene's tremendous electrical properties, magnetism in graphene could also have interesting applications in the area of spintronics, which uses the magnetic moment of the electron, instead of its electric charge, to represent the information in a computer.

"This opens the possibility of 'defect engineering' in graphene - plucking out atoms in the right places to design the magnetic properties you want," said Fuhrer.

This research was supported by grants from the National Science Foundation and the Office of Naval Research.

####

About University of Maryland
UMD Center for Nanophysics and Advanced Materials
Research at the center focuses on understanding the limits of graphene's conductivity, what causes the scattering of its electrons, and how to make graphene more stable and reliable. This University of Maryland research is an interdisciplinary effort, involving investigative teams in nanotechnology, materials science and condensed matter physics. While research in nanotechnology focuses on graphene's electronic properties, research in material science investigates the control of the material fabrication of graphene, and research in condensed matter physics examines the behavior of electrons in graphene for its potential use as a semiconductor.

Michael Fuhrer leads the team that investigates the possibilities of graphene for electronic application, particularly exploring the potential of graphene's high level of mobility and the promise that suggests for the material's use in electrically conducting, transparent film. A team founded by renowned UMD physicist and materials scientist Ellen Williams leads research on surface science. Current experimentation focuses on determining the effects of the impurities in graphene, leading to an understanding of the material's potential in a cleaner state. Maryland's Physics Professor Sankar Das Sarma, Distinguished University Professor & Director of the Condensed Matter Theory Center, leads a team of post-doctoral researchers interested in understanding the theory behind the science of graphene and the research being done on its applications.

For more information, please click here

Contacts:
Lee Tune
301 405 4679


Science Contact:
Michael S. Fuhrer
Professor, Department of Physics,
and
Director, Center for Nanophysics and Advanced Materials
University of Maryland at College Park
College Park, MD 20742-4111
Office phone: (301) 405-6143
Lab phones: (301) 405-8284
or 405-0907 or 405-0801
email:

Copyright © University of Maryland

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

"Tunable Kondo effect in graphene with defects," Jian-Hao Chen, Liang Li, William G. Cullen, Ellen D. Williams & Michael S. Fuhrer

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Graphene/ Graphite

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Govt.-Legislation/Regulation/Funding/Policy

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Chip Technology

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Memory Technology

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project