Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New Route To Graphene Devices - Nanoelectronics: Procedure draws on industry-compatible methods and materials

Abstract:
A new strategy for fabricating graphene-based transistors—one that relies on materials and methods compatible with those used in the microelectronics industry—has been developed by researchers at IBM (Nature, DOI: 10.1038/nature09979). The work may lead to commercially viable techniques for manufacturing electronic devices that exploit the unique properties of graphene, a layer of carbon one atom thick.

New Route To Graphene Devices - Nanoelectronics: Procedure draws on industry-compatible methods and materials

Washington, DC | Posted on April 12th, 2011

Graphene's outstanding electronic and other properties have sparked a wave of research aimed at making circuit components based on the ultrathin material. The goal is to use graphene to make circuit elements that are smaller and that outperform today's devices.

With that goal in mind, a number of research teams have incorporated graphene electrodes into radio-frequency (RF) transistors, fast-acting signal amplifiers that play a central role in wireless communication systems. But the graphene electrodes in the fastest of those transistors are prepared by a laborious manual procedure.

Graphene can be prepared more efficiently in larger batches via vapor deposition methods. But those procedures generally call for depositing the film on a layer of silicon dioxide, which adversely affects the electronic performance of graphene devices.

To sidestep those limitations, Yanqing Wu, Yu-ming Lin, Phaedon Avouris, and coworkers at IBM's Thomas J. Watson Research Center developed a vapor deposition method in which graphene ends up on diamond-like carbon, a material well-known to the semiconductor industry with desirable electronic properties. Initial tests show that RF transistors made via the new method operate at very high frequencies and work well even at cryogenic temperatures.

"The approach of the IBM team is very interesting because it is compatible with common semiconductor processing," says Frank Schwierz, a device physicist at the Technical University of Ilmenau, in Germany. At this early stage, before the fabrication method has been optimized, Schwierz is cautious about calling the technique a breakthrough. "But it may turn out to be very useful in the future," he says.

####

For more information, please click here

Copyright © American Chemical Society (ACS)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Nature, DOI: 10.1038/nature09979

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Graphene/ Graphite

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Chip Technology

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project