Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Molecular frameworks show potential for better solar cells

Fernando Uribe-Romo
Molecular building blocks assemble on graphene to provide oriented and ordered covalent organic frameworks.
Fernando Uribe-Romo
Molecular building blocks assemble on graphene to provide oriented and ordered covalent organic frameworks.

Abstract:
Solar cells made from organic materials are inexpensive, lightweight and flexible, but their performance lags behind cells that contain silicon or other inorganic materials. Cornell chemist William Dichtel and colleagues have found a way to synthesize ordered organic films that could be a major step toward solving this problem.

Molecular frameworks show potential for better solar cells

Ithaca, NY | Posted on April 11th, 2011

It's the first time researchers have been able to coax materials known as covalent organic frameworks (COFs) out of their common powdered form into flat sheets of precisely ordered molecules on a conductive surface. That clears a major hurdle toward using COFs to replace the more expensive, less versatile materials used in solar cells and other electronics today.

The research appears in the April 8 issue of Science.

COFs have a variety of properties that are not found in traditional organic polymers, including excellent thermal stability, high surface area and permanent porosity. But while researchers have identified them as intriguing candidates for such devices, they have been hamstrung by the fact that the materials normally exist only as insoluble powders.

Dichtel, assistant professor of chemistry and chemical biology, and colleagues developed a simple process for growing thin (25-400 nanometers thick) films of COFs on a surface of graphene, a single-atom-thick sheet of carbon. They used X-ray diffraction at the Cornell High Energy Synchrotron Source (CHESS) to determine the materials' structure and orientation. The COFs grow as continuous films of well ordered, stacked layers on the graphene surfaces.

Unlike the powder form, the films grown on transparent surfaces can be probed using modern optical measurements. Researchers can also vary the properties of the frameworks by altering the structure of their components.

"These materials are so versatile -- we can tune the properties rationally, rather than relying on molecules to pack into films unpredictably," Dichtel said.

To demonstrate, the researchers created three variations of the frameworks. Of the three, one shows particular promise for solar cells -- it uses molecules called phthalocyanines, which are commonly found in industrial dyes used in products from blue jeans to ink pens.

Phthalocyanines, which are related to chlorophyll, absorb light over most of the solar spectrum -- a rare property for a single organic material.

"Obtaining these materials as films on electrode materials is a major step toward studying and using them in devices," Dichtel said. "This method represents a general way to assemble molecules on surfaces predictably. This work opens the door to take these materials in many other directions."

The research was funded by Cornell and the National Science Foundation.

####

For more information, please click here

Contacts:
Media Contact:
Blaine Friedlander
(607) 254-8093


Cornell Chronicle:
Susan Lang
(607) 255-3613


Lauren Gold


Chronicle Online
312 College Ave.
Ithaca, NY 14850
607.255.4206

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Graphene/ Graphite

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project