Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > JQI Physicists Demonstrate Coveted 'Spin-Orbit Coupling' for the First Time in Ultracold Atomic Gases

In an ultracold gas of nearly 200,000 rubidium-87 atoms (shown as the large humps) the atoms can occupy one of two energy levels (represented as red and blue); lasers then link together these levels as a function of the atoms’ motion. At first atoms in the red and blue energy states occupy the same region (Phase Mixed), then at higher laser strengths, they separate into different regions (Phase Separated).
Credit: Ian Spielman, JQI/NIST
In an ultracold gas of nearly 200,000 rubidium-87 atoms (shown as the large humps) the atoms can occupy one of two energy levels (represented as red and blue); lasers then link together these levels as a function of the atoms’ motion. At first atoms in the red and blue energy states occupy the same region (Phase Mixed), then at higher laser strengths, they separate into different regions (Phase Separated).

Credit: Ian Spielman, JQI/NIST

Abstract:
Physicists at the Joint Quantum Institute (JQI), a collaboration of the National Institute of Standards and Technology (NIST) and the University of Maryland-College Park, have for the first time caused a gas of atoms to exhibit an important quantum phenomenon known as spin-orbit coupling. Their technique opens new possibilities for studying and better understanding fundamental physics and has potential applications to quantum computing, next-generation "spintronics" devices and even "atomtronic" devices built from ultracold atoms.

JQI Physicists Demonstrate Coveted 'Spin-Orbit Coupling' for the First Time in Ultracold Atomic Gases

Gaithersburg, MD | Posted on March 9th, 2011

In the researchers' demonstration of spin-orbit coupling, two lasers allow an atom's motion to flip it between a pair of energy states. The new work, published in Nature*, demonstrates this effect for the first time in bosons, which make up one of the two major classes of particles. The same technique could be applied to fermions, the other major class of particles, according to the researchers. The special properties of fermions would make them ideal for studying new kinds of interactions between two particles—for example those leading to novel "p-wave" superconductivity, which may enable a long-sought form of quantum computing known as topological quantum computation.

In an unexpected development, the team also discovered that the lasers modified how the atoms interacted with each other and caused atoms in one energy state to separate in space from atoms in the other energy state.

One of the most important phenomena in quantum physics, spin-orbit coupling describes the interplay that can occur between a particle's internal properties and its external properties. In atoms, it usually describes interactions that only occur within an atom: how an electron's orbit around an atom's core (nucleus) affects the orientation of the electron's internal bar-magnet-like "spin." In semiconductor materials such as gallium arsenide, spin-orbit coupling is an interaction between an electron's spin and its linear motion in a material.

"Spin-orbit coupling is often a bad thing," said JQI's Ian Spielman, senior author of the paper. "Researchers make ‘spintronic' devices out of gallium arsenide, and if you've prepared a spin in some desired orientation, the last thing you'd want it to do is to flip to some other spin when it's moving."

"But from the point of view of fundamental physics, spin-orbit coupling is really interesting," he said. "It's what drives these new kinds of materials called ‘topological insulators.'"

One of the hottest topics in physics right now, topological insulators are special materials in which location is everything: the ability of electrons to flow depends on where they are located within the material. Most regions of such a material are insulating, and electric current does not flow freely. But in a flat, two-dimensional topological insulator, current can flow freely along the edge in one direction for one type of spin, and the opposite direction for the opposite kind of spin. In 3-D topological insulators, electrons would flow freely on the surface but be inhibited inside the material. While researchers have been making higher and higher quality versions of this special class of material in solids, spin-orbit coupling in trapped ultracold gases of atoms could help realize topological insulators in their purest, most pristine form, as gases are free of impurity atoms and the other complexities of solid materials.

Usually, atoms do not exhibit the same kind of spin-orbit coupling as electrons exhibit in gallium-arsenide crystals. While each individual atom has its own spin-orbit coupling going on between its internal components (electrons and nucleus), the atom's overall motion generally is not affected by its internal energy state.

But the researchers were able to change that. In their experiment, researchers trapped and cooled a gas of about 200,000 rubidium-87 atoms down to 100 nanokelvins, 3 billion times colder than room temperature. The researchers selected a pair of energy states, analogous to the "spin-up" and "spin-down" states in an electron, from the available atomic energy levels. An atom could occupy either of these "pseudospin" states. Then researchers shined a pair of lasers on the atoms so as to change the relationship between the atom's energy and its momentum (its mass times velocity), and therefore its motion. This created spin-orbit coupling in the atom: the moving atom flipped between its two "spin" states at a rate that depended upon its velocity.

"This demonstrates that the idea of using laser light to create spin-orbit coupling in atoms works. This is all we expected to see," Spielman said. "But something else really neat happened."
They turned up the intensity of their lasers, and atoms of one spin state began to repel the atoms in the other spin state, causing them to separate.

"We changed fundamentally how these atoms interacted with one another," Spielman said. "We hadn't anticipated that and got lucky."

The rubidium atoms in the researchers' experiment were bosons, sociable particles that can all crowd into the same space even if they possess identical values in their properties including spin. But Spielman's calculations show that they could also create this same effect in ultracold gases of fermions. Fermions, the more antisocial type of atoms, cannot occupy the same space when they are in an identical state. And compared to other methods for creating new interactions between fermions, the spin states would be easier to control and longer lived.

A spin-orbit-coupled Fermi gas could interact with itself because the lasers effectively split each atom into two distinct components, each with its own spin state, and two such atoms with different velocities could then interact and pair up with one other. This kind of pairing opens up possibilities, Spielman said, for studying novel forms of superconductivity, particularly "p-wave" superconductivity, in which two paired atoms have a quantum-mechanical phase that depends on their relative orientation. Such p-wave superconductors may enable a form of quantum computing known as topological quantum computation.

* Y.-J. Lin, K. Jiménez-García and I.B. Spielman. Spin-orbit-coupled Bose-Einstein condensates. Nature. Posted online March 2, 2011.

Sign Up for NIST E-mail alerts:

####

About NIST
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Commerce Department.

For more information, please click here

Contacts:
Ben Stein
301-975-3067

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Physics

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Spintronics

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Quantum Computing

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Quantum nanoscience

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project