Home > Press > mPhase Smart NanoBattery Published in IEEE/ASME Journal of Microelectromechanical Systems: Microfluidic Control Using MEMS Processing
Abstract:
mPhase Technologies, Inc. (OTCBB: XDSL), a leader in the development of Smart Surfaces and advanced battery technologies announced today that an article describing some of the technical aspects of the Smart NanoBattery architecture is published in the IEEE/ASME Journal of Microelectromechanical Systems.
The title of the paper, "Robust Si-Based Membranes for Fluid Control in Microbatteries Using Superlyophobic Nanostructures," is published in the IEEE/ASME Journal of Microelectromechanical Systems, a peer review technical journal describing leading edge research and development in areas involving Microelectromechanical Systems (MEMS) designs.
IEEE/ASME Journal of Microelectromechanical Systems was the number nine most-cited journal in electrical and electronics engineering in 2004, according to the annual Journal Citation Report (2004 edition) published by the Institute for Scientific Information. Read more at www.ieee.org/products/citations.html.
The article describes technical details of how the silicon honeycomb membrane used in the Smart NanoBattery was prepared using MEMS-type processing and the evolution of the unique "nanonail" design features that enable superlyophobic (also called omniphobic, superolephobic) behavior on the surface of the silicon membrane. The article goes on to describe how a variety of low and high-surface-tension liquids were repelled by the porous membranes, without liquid penetrating into the pores of the membrane, and how this design has been applied in the development of a reserve battery using electrowetting for control of cell activation and triggering. The superlyophobic membrane designed and implemented by the mPhase team is the key element of mPhase's Smart NanoBattery technology.
The article on the Smart NanoBattery can be found online at the IEEE web site with the following URL: dx.doi.org/10.1109/JMEMS.2010.2090504. A copy of the article can also be found on the mPhase web site at www.mphasetech.com/pdfarticles/mphase_membranes.pdf
####
About mPhase Technologies, Inc.
mPhase Technologies is introducing a revolutionary Smart Surface technology enabled by breakthroughs in nanotechnology, MEMS processing and microfluidics. Our Smart Surface technology has potential applications within drug delivery systems, lab-on-a-chip analytic systems, self-cleaning systems, liquid and chemical sensor systems, and filtration systems. mPhase has pioneered its first Smart Surface enabled product, the mPhase Smart NanoBattery.
In addition to the Smart Surface technology, mPhase recently introduced its first product, the mPower Emergency Illuminator, an award-winning product designed by Porsche Design Studio. http://www.mpowertech.com
Forward-Looking Statements
As a cautionary note to investors, certain matters discussed in this press release may be forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Such matters involve risks and uncertainties that may cause actual results to differ materially, including the following: changes in economic conditions; general competitive factors; acceptance of the Company's products in the market; the Company's success in technology and product development; the Company's ability to execute its business model and strategic plans; and all the risks and related information described from time to time in the Company's SEC filings, including the financial statements and related information contained in the Company's SEC Filing. mPhase assumes no obligation to update the information in this release.
For more information, please click here
Contacts:
mPhase Technologies, Inc.
Investor Relations
973-256-3737
Copyright © Marketwire
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Microfluidics/Nanofluidics
Implantable device shrinks pancreatic tumors: Taming pancreatic cancer with intratumoral immunotherapy April 14th, 2023
Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022
Oregon State University research pushes closer to new therapy for pancreatic cancer May 6th, 2022
MEMS
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||