Home > Press > Magnetic Nanoparticles Enable Potential New Approach for Treating Ovarian Cancer
Abstract:
A paper published recently in the journal Nanomedicine could provide the foundation for a new ovarian cancer treatment option, one that would use an outside-the-body filtration device to remove a large portion of the free-floating cancer cells that often create secondary tumors. Indeed, this new approach to preventing the spread of ovarian cancer is so promising that its inventors at the Georgia Institute of Technology have formed a startup company and are working with a medical device firm to design a prototype of the new treatment system.
John McDonald led the research team that developed the new system, which uses magnetic nanoparticles engineered to capture cancer cells. Added to fluids removed from a patient's abdomen, the magnetic nanoparticles would latch onto the free-floating cancer cells, allowing both the nanoparticles and cancer cells to be removed by magnetic filters before the fluids are returned to the patient's body.
In mice with free-floating ovarian cancer cells, a single treatment with an early prototype of the nanoparticle-magnetic filtration system captured enough of the cancer cells that the treated mice lived nearly a third longer than untreated ones. The researchers expect multiple treatments to extend the longevity benefit, though additional research will be needed to document that and to determine the best treatment options. "Almost no one dies from primary ovarian cancer," said Dr. McDonald. "You can remove the primary cancer, but the problem is metastasis. A good deal of the metastasis in ovarian cancer comes from cancer cells sloughing off into the abdominal cavity and spreading the disease that way."
The removal system being developed by Dr. McDonald and postdoctoral fellow Ken Scarberry, who is also the chief executive officer of startup company Sub-Micro, should slow tumor progression in humans. It may reduce the number of free-floating cancer cells enough that other treatments, and the body's own immune system, could keep the disease under control. "If you can reduce metastasis, you can improve the lifespan of the person with the disease and get a better chance of treating it effectively," said Dr. McDonald. "One goal is to make cancer a chronic disease that can be effectively treated over an extended period of time. If we can't cure it, perhaps we can help people to live with it."
Earlier in vitro studies published by the authors of the Nanomedicine paper showed that the magnetic nanoparticles could selectively remove human ovarian cancer cells from ascites fluid, which builds up in the peritoneal cavities of ovarian cancer patients. The nanoparticles are engineered with surface molecules that allow them to selectively attach to cancer cells. The researchers believe that treating fluid removed from the body avoids potential toxicity problems that could result from introducing the nanoparticles into the body, though further studies are needed to confirm that the treatment would have no adverse effects.
The recently reported study used three sets of female mice to study the benefit of the nanoparticle-magnetic filtration system. Each mouse was injected with approximately 500,000 rapidly reproducing ovarian cancer cells. In the experimental group, the researchers removed fluid from the abdomens of the mice immediately after injection of the cancer cells. They then added the magnetic nanoparticles to the fluid, allowed them to mix, then magnetically removed the nanoparticles along with the attached cancer cells before returning the fluid. The steps were repeated six times for each mouse.
One control group received no treatment at all, while a second control group underwent the same treatment as the experimental group, but without the magnetic nanoparticles. Mice in the two control groups survived a median of 37 days, while the treated mice lived 12 days longer, a 32 percent increase in longevity.
Though much more research must be done before the technique can be tested in humans, Drs. McDonald and Scarberry envision a system very similar to what kidney dialysis patients now use, but with a buffer solution circulated through the peritoneal cavity to pick up the cancer cells. "What we are developing is akin to hemofiltration or peritoneal dialysis in which the patient could come into a clinic and be hooked up to the device a couple of times a week," said Scarberry. "The treatment is not heavily invasive, so it could be repeated often."
The researchers hope to have a prototype circulation and filtration device ready for testing within three years. After that will come studies into the best treatment regimen, examining such issues as the number of magnetic nanoparticles to use, the number of treatments and treatment spacing. If those are successful, the company will work with the FDA to design human clinical trials. The researchers are also studying how their magnetic nanoparticles could be engineered to capture ovarian cancer stem cells, which are not affected by existing chemotherapy. Removing those cells could help eliminate a potent source of new cancer cells.
####
About The National Cancer Institute (NCI)
The NCI Alliance for Nanotechnology in Cancer is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat, and prevent cancer. Through its programs and initiatives, the Alliance is committed to building a community of researchers dedicated to using nanotechnology to advance the fight against cancer.
As part of the Center for Strategic Scientific Initiatives, the Alliance for Nanotechnology in Cancer works in concert with other NCI advanced technology initiatives to provide the scientific foundation and team science that is required to transform cancer research and care.
For more information, please click here
Contacts:
National Cancer Institute
Center for Strategic Scientific Initiatives
NCI Office of Cancer Nanotechnology Research (OCNR)
Building 31, Room 10A52
31 Center Drive, MSC 2580
Bethesda, MD 20892-2580
Telephone: (301) 451-8983
Copyright © The National Cancer Institute (NCI)
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||