Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers Discover a New Class of Magic Atomic Clusters Called Superhalogens

This image illustrates MnxCl2x+1clusters - new class of magnetic superhalogens.The violet and green spheres represent Mn and Cl atoms, respectively. Image courtesy of Puru Jena, Ph.D./VCU, and Anil Kandalam, Ph.D./McNeese State University.
This image illustrates MnxCl2x+1clusters - new class of magnetic superhalogens.The violet and green spheres represent Mn and Cl atoms, respectively. Image courtesy of Puru Jena, Ph.D./VCU, and Anil Kandalam, Ph.D./McNeese State University.

Abstract:
An international team of researchers has discovered a new class of magnetic superhalogens - a class of atomic clusters able to exhibit unusual stability at a specific size and composition, which may be used to advance materials science by allowing scientists to create a new class of salts with magnetic and super-oxidizing properties not previously found.

by Sathya Achia Abraham, VCU Communications and Public Relations

Researchers Discover a New Class of Magic Atomic Clusters Called Superhalogens

Richmond, VA | Posted on February 15th, 2011

The discovery, which was published Feb. 10 in the Early View issue of the international chemistry journal Angewandte Chemie International Edition, was based on theoretical work by researchers from Virginia Commonwealth University, McNeese State University, and Peking University in China, and experimental work at Johns Hopkins University.

Unlike conventional superhalogens that are composed of a metal atom at the core and surrounded by halogen atoms, the magnetic superhalogens discovered by this team are composed of stoichiometric metal-halogen moieties at the core to which an additional halogen is attached.

The new chemical species known as magnetic superhalogens mimic the chemistry of halogens which are a class of elements from the periodic table, namely, iodine, astatine, bromine, fluorine and chlorine. The word halogen means "salt-former," and when one of the elements above combines with sodium, they can form a salt.

Specifically, the cluster is MnxCl2x+1, where x = 1, 2, 3, and so on, have manganese and chlorine atoms as a core to which only one chlorine atom is attached. The manganese atoms carry a large magnetic moment and therefore make these superhalogens magnetic.

"One can now design and synthesize yet unknown magnetic superhalogens by changing the metal atom from manganese to other transition metal atoms and changing chlorine to other halogen atoms. In addition to their use as oxidizing agents, being magnetic opens the door to the synthesis a new class of salts," said lead investigator Puru Jena, Ph.D., distinguished professor of physics at VCU.

According to Jena, superhalogens are like halogens, in the sense they form negative ions, but their affinity to attract electrons is far greater than those of any halogen atoms. Negative ions are useful as oxidizing agents, for purification of air and in serotonin release for uplifting mood.

"Superhalogens can do the same thing as halogens can do, only better," said Jena. "The ability of superhalogens to carry large quantities of fluorine and chlorine can be used for combating biological agents as well."

"In addition, superhalogens, due to their large electron affinity, can involve inner core electrons of metal atoms in chemical reaction, thus fundamentally giving rise to new chemistry," said Jena.

In October, Jena and his colleagues reported the discovery of a new class of highly electronegative chemical species called hyperhalogens, which use superhalogens as building blocks around a metal atom. The chemical species may have application in many industries.

Jena collaborated with researchers Qian Wang, Ph.D., with the Department of Physics at VCU; Kiran Boggavarapu, Ph.D., with the Department of Chemistry at McNeese State University, and Anil K. Kandalam, Ph.D., with the Department of Physics at McNeese State University; Qiang Sun, Ph.D., and graduate student, Miao Miao Wu, with VCU's Department of Physics at Peking University; and Haopeng Wang and Yeon Jae Ko, both graduate students, and Kit H. Bowen, Ph.D., all with the Department of Chemistry at Johns Hopkins University.

The work was supported in part by the federal Defense Threat Reduction Agency and the Department of Energy.

####

About Virginia Commonwealth University
Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls more than 32,000 students in 211 certificate and degree programs in the arts, sciences and humanities. Sixty-nine of the programs are unique in Virginia, many of them crossing the disciplines of VCU’s 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation’s leading academic medical centers.

For more information, please click here

Copyright © Virginia Commonwealth University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chemistry

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Govt.-Legislation/Regulation/Funding/Policy

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Possible Futures

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Industrial

Quantum interference in molecule-surface collisions February 28th, 2025

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

Research partnerships

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project