Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Molecules Are Sensitive to Their Surroundings

Diffraction studies provided the insights needed to understand key molecules in hydrogen storage
Diffraction studies provided the insights needed to understand key molecules in hydrogen storage

Abstract:
Structure of hydrogen storage molecule solved, once orientation of nearby ions elucidated

Molecules Are Sensitive to Their Surroundings

Richland, WA | Posted on February 8th, 2011

Results: For nearly a century, nobody knew how the little molecule that's in the middle of many of today's hydrogen storage and release concepts was organized. Thanks to an interdisciplinary team of scientists at Pacific Northwest National Laboratory and Los Alamos National Laboratory, the structure of this molecule, known as DADB, has been determined. And DADB's structure was exactly opposite of what was expected in more ways than one.

"The irony," said Dr. Tom Autrey, the PNNL scientist who led the research, "is that the structure could not be that complex." The challenge was in understanding how one structure, containing a pair of nitrogen and boron atoms surrounded by only 12 hydrogen atoms, stretched and twisted in the solid molecular crystal.

Why it matters: Running cars on fossil fuels presents growing problems, economically, politically, and environmentally. Replacing fossil fuels with hydrogen and fuel cells is an attractive option. Determining the structure of DADB, created at the initial stages when hydrogen is released from the popular hydrogen storage material ammonia borane, allows scientists to accurately model and predict complex, molecular reactions in the solid state. Understanding the subtleties of the structure of DADB also provides insights into developing new materials with the perfect properties to store energy in chemical bonds for efficient fuel cell operations.

Methods: The team began by synthesizing the DADB using a new method they developed that allowed the molecular crystal to slowly form at room temperature. They used solid-state nuclear magnetic resonance (NMR) spectroscopy to study the molecule. The NMR spectrum of the molecular crystal was surprisingly different than the NMR spectrum of the molecular complex in solution. The team felt that the hydrogen atoms in the molecular crystal might be influencing the arrangement of atoms.

"Theoreticians couldn't accurately predict the structure, and experimentalists weren't getting all the information needed with NMR," said Dr. Gregory Schenter, a chemical theorist on the study. "So, we used neutron diffraction to see the missing pieces. It took a while, but we got that ‘ah-ha' moment."

With the added diffraction data, they could arrange the atoms in a pattern that explained the results they'd seen. "Mark Bowden solved the 100-year-old puzzle," said Autrey of his PNNL colleague. "He showed how the molecule's structure was affected by the interactions with the neighboring molecules."

This research resulted in two different arrangements of borohydride ions (BH4-) giving the molecule its unique twisted structure.

What's next? This work is part of a series of broader efforts at PNNL to answer the fundamental questions around how to activate hydrogen for use in catalytic reactions as well as energy storage in chemical bonds for use in fuel cell applications. These fundamental studies are needed if the United States is to develop novel methods to store energy from solar and other intermittent clean energy sources.

Acknowledgments: The Department of Energy's Office of Basic Energy Sciences funded this research.

The work was done in DOE's EMSL, a national scientific user facility at PNNL, and the Manuel Lujan Jr. Center operated by Los Alamos National Security LLC.

The work was done by Mark Bowden, David J. Heldebrant, Abhi Karkamkar, Gregory K. Schenter, and Tom Autrey of Pacific Northwest National Laboratory along with Thomas Proffen of Lujan Neutron Scattering Center, Los Alamos National Laboratory.

Reference: Bowden M, DJ Heldebrant, A Karkamkar, T Proffen, GK Schenter, and T Autrey. 2010. "The diammoniate of diborane: Crystal structure and hydrogen release." Chemical Communications 46, 8564-8566.

####

For more information, please click here

Copyright © Pacific Northwest National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Govt.-Legislation/Regulation/Funding/Policy

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Possible Futures

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Tools

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Energy

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Automotive/Transportation

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Fuel Cells

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project