Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A hidden magnetic configuration in manganite thin films

Preparing samples for study at the NSLS.
Preparing samples for study at the NSLS.

Abstract:
Complex oxide materials are intriguing because their properties span an enormous range of distinct physical states, including conductors, insulators, superconductors, ferromagnets, anti-ferromagnets, ferro-electrics, piezo electrics, and multiferroics. Part of the attraction of these materials is that their properties can be modified by introducing a mixed valence state — that is, a composition that includes metal ions with more than one oxidation state.

A hidden magnetic configuration in manganite thin films

Upton, NY | Posted on February 8th, 2011

Scientists from DOE's Brookhaven and Lawrence Berkeley National Laboratories, SLAC National Accelerator Center, and collaborators at the University of California, Berkeley, and the Science and Technology Facilities Council of the UK are taking a closer look at one such material with a particular composition of lanthanum strontium and magnesium oxide.

La0.7Sr0.3MnO3 (LSMO) is a mixed-valence, complex oxide (containing a mix of Mn3+ and Mn4+ ions) whose properties have been examined extensively. LSMO is thought to be a simple metallic ferromagnet and it has been used in prototype, thin-film electrical devices (such as magneto-resistance junctions) that seek to exploit the many intriguing properties of complex oxides for new applications.

To further explore LSMO, the scientists grew single-layer films with a variable number of unit cells epitaxially on strontium titanate (STO). Using a combination of x-ray magnetic circular dichroism, x-ray absorption spectroscopy, and x-ray reflectivity measurements at Brookhaven's National Synchrotron Light Source (NSLS), the scientists discovered that, due to doping instabilities and/or charge transfer at the interface, an intermediate enriched Mn3+ layer of a few unit cells develops at the LSMO/STO interface. The presence of this intermediate layer may provide a mechanism for antiferromagnetic coupling across the interface — which, in turn, may lead to the reversed magnetic configuration observed in thicker LSMO films.

The findings demonstrate the rich variety of interfacial spin couplings that can occur in complex oxide thin films that may be utilized in engineering thin-film devices. This work was partially supported by the Semiconductor Research Corporation's NRI-WIN program.

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

For more information, please click here

Contacts:
Karen McNulty Walsh
631.344.8350,

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023

New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022

Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project