Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Touchscreens Made of Carbon

Touchscreen that contain carbon nanotubes can be made of low-priced renewable materials
Touchscreen that contain carbon nanotubes can be made of low-priced renewable materials

Abstract:
Touchscreens are in - although the technology still has its price. The little screens contain rare and expensive elements. This is the reason why researchers at Fraunhofer are coming up with an alternative display made of low-priced renewable raw materials available all over the world. The researchers are presenting touchscreens that contain carbon nanotubes at the nano tech 2011 fair in Tokyo (Hall 5, Stand E-18-11) from February 16-18.

Touchscreens Made of Carbon

Munich, Germany | Posted on January 28th, 2011

Just touching it slightly with the tips of your fingers is enough. You can effortlessly write, navigate, open menu windows or rotate images on touchscreens. Within fractions of a second your touch is translated into control commands that a computer understands. At first glance, this technology borders on the miraculous, but in real life this mystery just is a wafer-thin electrode under the glass surface of the display made of indium-tin-oxide, ITO. This material is nothing short of ideal for use in touchscreens because it is excellent at conducting slight currents and lets the colors of the display pass through unhindered. But, there is a little problem: there are very few deposits of indium anywhere in the world. In the long term, the manufacturers of electronic gadgets are afraid that they will be dependent upon the prices set by suppliers. This is the reason why indium is one of what people call "strategic metals."

Therefore, private industry is very interested in alternatives to ITO that are similarly efficient. The researchers at Fraunhofer have succeeded at coming up with a new material for electrodes that is on the same level as ITO and on top of it is much cheaper. Its main components are carbon nanotubes and low-cost polymers. This new electrode foil is composed of two layers. One is the carrier, a thin foil made of inexpensive polyethylenterephthalate PET used for making plastic bottles. Then a mixture of carbon-nanotubes and electrically conducting polymers is added that is applied to the PET as a solution and forms a thin film when it dries.

In comparison to ITO, these combinations of plastics have not been particularly durable because humidity, pressure or UV light put a strain on the polymers. The layers became brittle and broke down. Only carbon nanotubes have made them stable. The carbon nanotubes harden on the PET to create a network where the electrically conducting polymers can be firmly anchored. That means that this layer is durable in the long run. Ivica Kolaric, project manager from Fraunhofer Institute for Manufacturing Engineering and Automation IPA, concedes that "the electrical resistance of our layer is somewhat greater than that of the ITO, but it's easily enough for an application in electrical systems." Its merits are unbeatable: carbon is not only low-cost and available all over the world. It is also a renewable resource that you can get from organic matter such as wood. Kolaric and his colleagues will be presenting their carbon touchdisplay at the 2011 nano tech fair. Since 2003 Fraunhofer researchers show their developments at the annual trade show.

There are a whole series of implementations for the new technology. This foil is flexible and can be used in a variety of ways. Kolaric sums up by saying "we could even make photovoltaic foils out of it to line corrugated roofs or other uneven structures." The researcher has already set up pilot production where the foil can be enhanced for a wide range of applications.

####

For more information, please click here

Contacts:
Franz Miller
Head of Press and Public Relations
Headquarters of the Fraunhofer-Gesellschaft
Hansastraße 27c
80686 Munich, Germany
franz.miller(at)zv.fraunhofer.de
Phone +49 89 1205-1300
Fax +49 89 1205-7515

Copyright © Fraunhofer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Display technology/LEDs/SS Lighting/OLEDs

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Possible Futures

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Events/Classes

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project