Home > Press > Imec launches new research program on high-bandwidth optical I/O
Abstract:
Imec announces the launch of a new industrial affiliation program on high-bandwidth optical input/output (I/O). The primary objective of the new program, which is part of imec's research platform on deep-submicron CMOS scaling, is to explore the use of optical solutions for realizing high-bandwidth I/O between CMOS chips.
According to the ITRS roadmap, the aggregate data rate for off-chip communication is expected to exceed 100Tb/s by 2020. However, no known manufacturable solution for achieving such bandwidth density is currently available. Silicon photonics has been identified as a prime candidate to deliver a technology solution for enabling cost-effective short-range optical links. The main benefits of silicon-based optical interconnects are their high speed, compact footprint, low power consumption and low cost, which enable the realization of a scalable interconnect solution. Moreover, the compatibility with existing CMOS processing infrastructure as well as the possibility of co-integration with CMOS circuits are additional important assets of the silicon photonics technology.
During the past ten years, imec and its associated lab INTEC at Ghent University have proven a track record in demonstrating the outstanding performance of silicon-based optical devices for high-speed data transmission, using silicon-on-insulator (SOI) substrates. Imec's new optical I/O program builds on this extensive expertise and aims at further developing a silicon-photonics solution for addressing the upcoming scaling challenges in interconnecting CMOS chips, in close collaboration with imec's industrial partners. The program includes a two-fold path-finding effort. First, the complete electrical-to-optical-to-electrical (E-O-E) transmission path will be modeled for various technological implementations and benchmarked against the requirements for various applications, as well as against existing solutions. This benchmarking effort will focus on optimizing bandwidth density, power consumption, thermal robustness and cost at the system level. Second, demonstrators of the full optical link will be realized in silicon, including all required components such as optical modulators, germanium-based photodetectors, and thermally robust optical multiplexers, as well as their CMOS-based driving and receiving circuits.
The optical I/O IIAP is part of imec's core program in which imec works together with leading IC companies on future CMOS technologies. In this framework, imec's core partners will actively participate in the IIAP at imec in Leuven (Belgium). Such on-site participation enables partner companies to have early access to new technology insights, processes and equipment.
####
About imec
Imec performs world-leading research in nanoelectronics. Imec leverages its scientific knowledge with the innovative power of its global partnerships in ICT, healthcare and energy. Imec delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society. Imec is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, US, China and Japan. Its staff of more than 1,750 people includes over 550 industrial residents and guest researchers. In 2009, imec's revenue (P&L) was 275 million euro. Further information on imec can be found at www.imec.be.
Imec is a registered trademark for the activities of IMEC International (a legal entity set up under Belgian law as a "stichting van openbaar nut”), imec Belgium (IMEC vzw supported by the Flemish Government), imec the Netherlands (Stichting IMEC Nederland, part of Holst Centre which is supported by the Dutch Government), imec Taiwan (IMEC Taiwan Co.) and imec China (IMEC Microelectronics (Shangai) Co. Ltd.).
For more information, please click here
Contacts:
Hanne Degans
External Communications Officer
T: +32 16 28 17 69
Mobile: +32 486 065 175
Barbara Kalkis
Maestro Marketing & PR
T :+1 408 996 9975
M : +1 408 529 4210
Copyright © imec
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||