Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Angstron Invents High Energy Density Graphene-Based Supercapacitor

Abstract:
Angstron has invented a graphene-based supercapacitor with ultra high energy density

Angstron Invents High Energy Density Graphene-Based Supercapacitor

Dayton, OH | Posted on January 6th, 2011

Angstron Materials Inc., has invented a graphene-based supercapacitor with ultra high energy density, a feature that permits storage of a significant amount of energy. As a rechargeable energy storage device, supercapacitors can be charged and discharged more quickly than batteries but have been challenged by their inability to store energy in the amounts required by automotive and electronic applications. Angstron's graphene-based supercapacitor has demonstrated an energy density that exceeds that of commercially available supercapacitors and is comparable with nickel metal hydride batteries.

"A supercapacitor that can store this much energy yet be completely charged or discharged in seconds or minutes offers a number of promising applications for the automotive and electronics industries," said Dr. Bor Jang, co-founder of Angstron.

"This type of supercapacitor is especially attractive for electric vehicle applications where the pairing of supercapacitors with fuel cells or batteries could provide a hybrid system capable of delivering high power acceleration and energy recovery during braking."

The world's largest producer of nano graphene platelets (NGPs), Angstron's single layer graphene has exhibited the highest electrical properties including exceptional in-plane electrical conductivity (up to ~ 20,000 S/cm) when compared to other nanomaterials including carbon nano-tubes (CNTs) and carbon nano-fibers (CNFs). Graphene also offers a very high specific surface area - up to 2675 square meters per gram. By creating curved graphene sheets that resist restacking, Angstron was able to dramatically improve specific surface area and energy density for greater energy storage.

"The risk during the manufacture of the electrode is that the graphene layers could be pushed back together," Dr. Jang explained. "We eliminated the problem of potential restacking by creating curved graphene sheets. This allows us to maintain an optimal surface area for more energy storage. The graphene electrode also enables fast charging and discharging of the supercapacitor. This development has pushed the specific energy density of an electrical double-layer (EDL) graphene-enabled supercapacitor to an unprecedented level of nearly 90 watt hours per kilogram at room temperature and a level of 136 watt hours per kilogram at 80 degrees Celsius."

####

About Angstron Materials
Angstron is the first advanced materials company to offer large quantities of ultra-thin, pristine nano-graphene platelets (NGPs). Angstron is also significantly reducing production cost barriers with its high performance nano-graphene solutions. A new 22,000 square foot manufacturing facility, based in Dayton, Ohio, allows our company to continue its research and development efforts while providing small to large batch processing and production.

For more information, please click here

Contacts:
Ron Beech
Phone: 937-331-9884
Fax: 937-558-0606

Copyright © Angstron Materials

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Products

Spectradyne Partners with Particle Technology Labs for Measurement Services December 6th, 2018

Mode-Changing MEMS Accelerometer from STMicroelectronics Combines High Measurement Resolution and Ultra-Low Power for Industrial Applications November 7th, 2018

Fat-Repellent Nanolayers Can Make Oven Cleaning Easier October 17th, 2018

Aculon, Inc. Enters into Strategic Partnership Agreement with Henkel Corporation to Supply Key Mobile Device Manufacturers with NanoProof® PCB Waterproof Technology October 17th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Energy

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Automotive/Transportation

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project