Home > Press > New Manufacturing Facility for Electrochemical Machines Opens in Ufa, Russia
![]() |
Abstract:
Ufa in the Russian Republic of Bashkortostan is home to a new manufacturing base for high-precision electrochemical machining stations. Opening ceremonies were held today. The technologically advanced equipment produces a range of items, from the common to extremely complex, using nanostructured materials and nanometrically structured surfaces.
Total investments for the project, under which new production is being established, are 285 million rubles. RUSNANO will invest up to 120 million rubles. Co-investors in the project are venture fund RVT Invest and a group of individuals who developed the project's technology.
General director of the project company ECM, Alexander Zaitsev, DSc Engineering, demonstrated the work of several of the machines to those who had gathered for opening ceremonies. Participants saw how the electrochemical machining stations, which are capable of reworking virtually all current-conducting metals and alloys, including the hardest of them—produce parts.
"Our scientific group has been working in electrochemistry for more than 30 years. It is rewarding for us to see our developments put to practical use. Here in the Republic of Bashkortostan, for example, several thousand people have already had operations with microsurgical instruments manufactured by Optimed with ECM's equipment. In addition to high-technology medicine, we work in engine construction for the aviation industry, automotive and in manufacturing instruments and fittings. These are just a few areas where our units can be useful," said Mr. Zaitsev.
"Consider the set of the features —like machining precision, productivity, and the finish surface quality —these electrochemical machines significantly outperform other machinery in the field today. For instance, it takes about half an hour to process a single titanium blade for an aircraft engine using the traditional method. Our machines will prepare several aircraft engine blades in just minutes," noted RUSNANO managing director, Department for Investments, Konstantin Demetriou.
About the technology
The proprietary technology for pulse electrochemical machining that ECM has introduced surpasses other methods for finish machining in integral tests for precision-roughness-productivity. Resulting surface roughness (up to Ra .002 micrometer) and machining precision (less than one micrometer) eliminate the need for the super finish grinding and polishing required with traditional operations. An automatic process control system and a built-in database of technological modes make it possible to machine parts of various shape and materials without additional research. Special modes of bipolar electrochemical machining provide for adjustment to the ratio of alloying elements in a very thin nanometric surface layer, making it possible to imbue various products with various characteristics. For example, an increase of chrome content in chrome-contained steel amplifies the wear and corrosion resistance qualities of the parts that are produced. The technology precludes the need for highly qualified operators.
####
About RUSNANO
The Russian Corporation of Nanotechnologies (RUSNANO) was established in 2007 by the Federal law ¹ 139-FZ to enable Government policy in the field of Nanotechnology.
To accomplish this task, RUSNANO co-invests in nanotechnology industry projects that have high commercial potential or social benefit. Early-stage investment by RUSNANO lowers the risk of its investment partners from the private sector.
RUSNANO participates in building nanotechnology infrastructure, which includes the nanotechnology centers of excellence, business incubators and early stage investment funds. RUSNANO provides scientific and educational programs that are required for its investment projects to succeed, and also supports the popularization of nanoscience and nanotechnology. RUSNANO selects promising spheres for investment based on longer-term sight created by the leading Russian and world experts.
To assist the Russian nanotechnology industry advance to the global market and strengthening of its international links RUSNANO develops partnerships with the leading nanotechnology centers in the world and organizes the annual Nanotechnology International Forum in Russia.
About ECM
ECM is a manufacturer of precision electrochemical machines for environmentally clean production of parts from a wide variety of metals, alloys, cermets, and nanostructured materials.
The founders of ECM have more than 30 years of experience in electrochemistry. They have created twelve serial models of electrochemical machines, been granted more than 100 patents, and introduced more than one hundred technological processes in Russia and abroad. Their work has been described in seven monographs and 300 articles.
For more information, please click here
Contacts:
RUSNANO international press office:
Anna Fradkova, press-secretary of the international press office
P.: +7 495 5424444 add.1424
M.: +7 985 7299860
Copyright © RUSNANO
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Openings/New facilities/Groundbreaking/Expansion
OCSiAl expands its graphene nanotube production capacities to Europe June 17th, 2022
GLOBALFOUNDRIES Moves Corporate Headquarters to its Most Advanced Semiconductor Manufacturing Facility in New York April 27th, 2021
Oxford Instruments Plasma Technology relocates to advanced manufacturing facility: Move driven by exceptional business growth February 12th, 2021
Govt.-Legislation/Regulation/Funding/Policy
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Materials/Metamaterials/Magnetoresistance
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Tools
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |