Home > Press > EU funds the ICT-FET Integrated Project AtMol to explore Atomic scale and single Molecule logic gate technologies
Abstract:
On January 1st, 2011, the European project AtMol will be officially launched for 4 years. Regrouping the scientific and technological talents of 10 research groups in Europe working together with the IMRE Institute from A*STAR (Singapore), AtMol is to open the atomic scale era of molecular computing integrating state of the art atomic scale technologies, new quantum architectures with multi-scale interconnection and packaging techniques for a single molecule to compute and be packaged into a molecular chip.
By Antonio Correia
AtMol had already established a detail process flow for fabricating the molecular chip i.e. a single calculating molecule unit connected via external nano-electrodes to preserve its integrity down to the atomic level even after its encapsulation. On a surface, the required logic functions are embedded in a single molecule but can also be implanted within an atomic scale circuit. AtMol will explore and demonstrate how the combination of classical and quantum information inside the same atomic scale circuit increases the computing power of the final intramolecular logic circuit. Atomic scale logics will be constructed using atom-by-atom manipulation, on-surface chemistry, and lab tested using a unique UHV transfer printing technology.
The AtMol research agenda necessitates the state-of-the-art UHV atomic scale interconnection machines comprising, a UHV surface preparation chamber, a UHV transfer printing device, an LT-UHV-STM (or a UHV-NC-AFM) for atomic scale construction, a FIM atomic scale tip apex fabrication device and a multi-probe system with its companion SEM or optical navigation microscope. At the starting of AtMol, only three of such machines exist worldwide and they are each housed within AtMol laboratories (Toulouse, Krakow and Singapore). They will be used to interconnect molecule logic gates one-by-one in a planar atomic scale multi-pad approach on the top, atomically reconstructed, surface of the wafer. For this molecular chip, the back face of the wafer will incorporate nano-to-micro-scale interconnections using nanofabricated vias. The AtMol patented hybrid micro-nano back interconnect approach will enable the full packaging of the molecular chip preserving the surface atomic scale precision of the design.
The AtMol Integrated Project and its related "dissemination & training" activities are going to provide both academic researchers and industry engineers access to the tools needed to be at the forefront of the atomic scale technology revolution, a revolution beyond nanotechnology.
AtMol Partners: CEMES-CNRS (Toulouse, France), LETI-CEA (Grenoble, France), Phantoms Foundation (Madrid, Spain), ICIQ (Tarragona, Spain), CSIC (Barcelona, Spain), Fritz Haber Institute (Berlin, Germany), Humboldt University (Berlin, Germany), Dresden Technical University (Dresden, Germany), Nottingham University (Nottingham, UK), Jagiellonian University (Krakow, Poland), IMRE A*STAR (Singapore).
ICT-FET ÅMOL-IT proactive program WEB site cordis.europa.eu/fp7/ict/fet-proactive/amolit_en.html
####
About Phantoms Foundation
The Phantoms Foundation focuses its activities on Nanotechnology and is a key actor in structuring and fostering European Excellence and enhancing collaborations in this field. Our goals are i) to provide an innovative platform for dissemination, transfer and transformation of basic nanoscience knowledge; and ii) to strengthen interdisciplinary research in nanoscience and nanotechnology and catalyse collaboration among international research groups and favour the emergence of new joint project proposals.
About AtMol
AtMol will establish comprehensive process flow for fabricating a molecular chip, i.e. a molecular processing unit comprising a single molecule connected to external mesoscopic electrodes with atomic scale precision and preserving the integrity of the gates down to the atomic level after the encapsulation. Logic functions will be incorporated in a single molecule gate, or performed by a single surface atomic scale circuit, via either a quantum Hamiltonian or a semi-classical design approach. AtMol will explore and demonstrate how the combination of classical and quantum information inside the same atomic scale circuit increases the computing power of the final logic circuit. Atomic scale logic gates will be constructed using atom-by-atom manipulation, on-surface chemistry, and unique UHV transfer printing technology.
For more information, please click here
Contacts:
Prof. Christian Joachim
Project Coordinator
Dr. Antonio Correia
Dissemination
Copyright © Phantoms Foundation
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Quantum Computing
New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Alliances/Trade associations/Partnerships/Distributorships
Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022
University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||