Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoparticles Deliver One-Two Therapeutic Punch to Kill Tumor Cells

Polymer-caged nanobins (PCNs) that can undergo Cu(I)-catalyzed click reactions enable the combination of GdIII magnetic resonance imaging (MRI) contrast agents and an anticancer drug (gemcitabine, GMC) into a single theranostic platform (see picture). The resulting gadolinium(III)-conjugated, GMC-loaded PCNs (GdIII–PCNGMC) exhibit a significantly superior performance in r1 relaxivity, drug uptake, and pH-sensitive drug release. Credit Angewandte Chemie International Edition
Polymer-caged nanobins (PCNs) that can undergo Cu(I)-catalyzed click reactions enable the combination of GdIII magnetic resonance imaging (MRI) contrast agents and an anticancer drug (gemcitabine, GMC) into a single theranostic platform (see picture). The resulting gadolinium(III)-conjugated, GMC-loaded PCNs (GdIII–PCNGMC) exhibit a significantly superior performance in r1 relaxivity, drug uptake, and pH-sensitive drug release. Credit Angewandte Chemie International Edition

Abstract:
The standard approach to cancer therapy today is to mix and match chemotherapy drugs in order to attack tumors in multiple ways. Now, two separate teams of investigators have demonstrated that using nanoparticles to deliver multiple drugs simultaneously can produce a synergistic effect that boosts the cell-killing ability of both drugs.

Nanoparticles Deliver One-Two Therapeutic Punch to Kill Tumor Cells

Bethesda, MD | Posted on December 17th, 2010

In one study, a team of investigators at Northwestern University has shown that they can combine two powerful but extremely toxic anticancer agents - cisplatin and doxorubicin - in one polymer nanoparticle, producing a substantial boost in their ability of the combination to destroy tumors. In addition, the two-in-one nanoparticle reduces the amount of both drugs needed to kill cancer cells, which presumably would reduce the toxic side effects associated with these drugs.

SonBinh Nguyen and Thomas O'Halloran led this study, which was published in the Journal of the American Chemical Society. Dr. O'Halloran is the co-principal investigator of one of 12 Cancer Nanotechnology Platform Partnerships funded by the National Cancer Institute Alliance for Nanotechnology in Cancer. He is also a member of the Northwestern University Center for Cancer Nanotechnology Excellence (CCNE), which is also part of the Alliance for Nanotechnology in Cancer.

Though originally designed to carry arsenic trioxide to solid tumors, the nanoparticles used in this study are proving to be quite versatile in their ability to ferry a wide range of cargos to malignancies. In this study, the investigators wanted to see if delivering two drugs in one nanoparticle offered any advantages of delivering them without the nanoparticle or in separate nanoparticles. The nanoparticles, which the researchers call nanobins, are made by encasing a liposome inside a pH-responsive polymer cage. In this case, doxorubicin is entrapped within the liposome's core, while cisplatin was entrapped in the polymer cage.

In an initial set of experiments, the investigators determined that a 5 to 1 ratio of cisplatin to doxorubicin was the most effective at treating ovarian tumors when the two drugs were combined in the same nanoparticle. When the two drugs were administered at this ratio but with each in its own nanoparticle, the combination was not only less effective at killing malignant cells, but the two drugs appeared to be interfering with each other, a phenomenon often observed in clinical practice. Administering the two drugs in the same nanoparticle ensures that the drugs are hitting their intracellular targets at the same time, which is what likely leads to the synergism observed in this study.

Meanwhile, Mansoor Amiji and Zhenfeng Duan, co-principle investigators of the Cancer Nanotechnology Platform Partnership at Northeastern University, have shown that a different type of polymer nanoparticle can also deliver two anticancer agents simultaneously and as a result can kill cancer cells that have become resistant to drug therapy. In this case, the researchers synthesized biocompatible polymer nanoparticles that entrapped paclitaxel and lonidamine and that targeted the epidermal growth factor receptor (EGFR) that is overexpressed on highly aggressive tumors. When added to tumor cells growing in culture, the nanoparticle containing both drugs was far more effective at killing the drug-resistance cells than when the two drugs were co-administered in separate nanoparticles. The investigators reported their findings in the journal Molecular Pharmaceutics.

In a separate set of experiments, the results of which were published in the journal Angewandte Chemie International Edition, Drs. Nguyen and O'Halloran, joined by Thomas Meade, another member of the Northwestern CCNE, demonstrated that nanobins can also co-deliver a therapeutic and magnetic resonance imaging agent to tumors. In this study, the researchers loaded the anticancer agent gemcitabine into the nanobin's core and added a gadolinium magnetic resonance contrast agent to the nanobin's surface. When added to mouse tumor cells, the nanobins were taken up rapidly and the nanobins were clearly visible in magnetic resonance images. In addition, the nanoparticles released their gemcitabine payload once the nanobins were taken up by the cultured cells.

This work, which is detailed in three papers, was supported in part by the NCI Alliance for Nanotechnology in Cancer, a comprehensive initiative designed to accelerate the application of nanotechnology to the prevention, diagnosis, and treatment of cancer. Abstracts of the papers are available at the journals' websites.

Journal of the American Chemical Society paper -
View abstract here pubs.acs.org/doi/abs/10.1021/ja107333g

Molecular Pharmaceutics paper -
View abstract here pubs.acs.org/doi/abs/10.1021/mp1002653

Angewandte Chemie International Edition paper -
View abstract here tinyurl.com/28yfmcv

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project