Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Dow and the AIBN announce second research collaboration

PhD student Sean Muir, AIBN’s Dr Denisa Jurcakova, Dow chairman and CEO Andrew Liveris and Professor Max Lu
PhD student Sean Muir, AIBN’s Dr Denisa Jurcakova, Dow chairman and CEO Andrew Liveris and Professor Max Lu

Abstract:
The Dow Chemical Company and UQ's Australian Institute for Bioengineering Nanotechnology (AIBN) yesterday signed a Memorandum of Understanding (MOU) for their second research alliance.

Dow and the AIBN announce second research collaboration

Australia | Posted on November 23rd, 2010

Dow will contribute approximately $AU1.74million in the three-year alliance, allowing AIBN to conduct research on sustainable sources for chemicals, new-generation circuitry for electronics and improved energy storage systems.

The MOU provides a framework for AIBN and Dow to focus on research with potential commercial value.

"Innovation is one of Dow's growth drivers and we have an aggressive pipeline of more than 500 projects with a potential value of $US30 billion and a risk-adjusted value of $US12 billion," said Andrew Liveris, Chairman and CEO of Dow.

"Collaboration with world-class research institutes such as the AIBN extends our innovation potential while providing access to top R&D talent."

AIBN Director Professor Peter Gray said the institute had world-leading researchers, advanced capabilities and a strong record of industrial collaboration, which ensured the collaboration with Dow was a good fit.

"Our internationally-recognized researchers are at the forefront of emerging technologies. Their focus is on finding solutions to real-world problems," he said.

"They appreciate the importance of challenging tradition and convention so discoveries are possible and our future brings new possibilities for a better lifestyle and a cleaner world."

Dow and AIBN's first research collaboration was signed three years ago in 2007 in the areas of bio-mimicry and a systems biotechnology approach to improving productivity and decreasing cost of natural pesticides.

About the research

Research into high performance cathode materials based on low-cost nanocarbons will involve the research group led by Professor Max Lu and Dr. Denisa Jurcakova. The objective of the project is to develop improved cathode materials with high energy and power densities for applications in hybrid vehicles and renewable energy storage systems. Concerns over climate change and high oil prices have led to an ever increasing interest in sustainable energy development, such as renewable energy production from solar and wind sources, and the development of hybrid and electric vehicles with low carbon dioxide emissions. Successful development of renewable energy systems requires a combination of efficient production, coupled with effective energy storage systems with high capacity, for when the sun doesn't shine, the wind doesn't blow, or when an electric vehicle needs to accelerate rapidly or have a decent driving range.

Research in the project will be applicable to the development of the next generation of cathodes materials, and will involve novel material design, synthesis, electrochemistry and fundamental chemistry. The improved nanoparticles developed will find use in batteries with potential use not only in portable devices, but for hybrid vehicles and energy storage for renewable resources such as sun and wind.

Research into new-generation circuitry for electronics will be completed by Professor Andrew Whittaker's and Dr. Idriss Blakey's research group. Researchers will use organic synthesis, physical chemistry and electrical engineering to craft functional plastics and polymers for the manufacture of integrated circuits. The new generation of circuits will increase performance, decrease size and cost and have potential uses in computers, cameras, smart phones, hand-held gadgets and even fridges.

Escalating oil costs and concerns about carbon dioxide emissions make it imperative to develop new manufacturing processes based on renewable substrates rather than diminishing fossil fuels. Research carried out in the third project will be led by Professor Lars Nielsen and Dr. Jens Kromer, and will use scientific advances in the biosciences to genetically reprogram bacteria to produce the chemical building blocks of the future.

AIBN's research excellence in synthetic biotechnology, and in the modeling and optimization of microbial metabolism, as well as polymer chemistry structure and function, make an ideal fit with Dow's position at the forefront of sustainable chemistries.

The alliance is ultimately expected to deliver new materials and processes capable of producing desired molecules from renewable agricultural resources in a cost effective manner, achieving long-term benefits for the consumer.

####

Contacts:
Media:
Erik de Wit
AIBN
+61 427 281 466


Linda Lim
The Dow Chemical Company
+65 96209814

Copyright © Australian Institute for Bioengineering and Nanotechnology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chemistry

Quantum interference in molecule-surface collisions February 28th, 2025

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Environment

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

New method in the fight against forever chemicals September 13th, 2024

Catalyzing environmental cleanup: A highly active and selective molecular catalyst and electrified membrane: Innovative electrochemical catalyst breaks down trichloroethylene pollutants at unprecedented rate September 13th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Automotive/Transportation

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

Research partnerships

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project