Home > News > Nanogenerator Powers Up
November 8th, 2010
Nanogenerator Powers Up
Abstract:
Devices that harvest wasted mechanical energy could make many new advances possible—including clothing that recharges personal electronics with body movements, or implants that tap the motion of blood or organs. But making energy-harvesting devices that are compact, flexible, and, above all, efficient remains a big challenge. Now researchers at Georgia Tech have made the first nanowire-based generators that can harvest sufficient mechanical energy to power small devices, including light-emitting diodes and a liquid-crystal display.
The generators take advantage of materials that exhibit a property called piezoelectricity. When a piezoelectric material is stressed, it can drive an electrical current (applying a current has the reverse effect, making the material flex). Piezoelectrics are already used in microphones, sensors, clocks, and other devices, but efforts to harvest biomechanical energy using them have been stymied by the fact that they are typically rigid. Piezoelectric polymers do exist, but they aren't very efficient.
Zhong Lin Wang, who directs the Center for Nanostructure Characterization at Georgia Tech, has been working on another approach: embedding tiny piezoelectric nanowires in flexible materials. Wang was the first to demonstrate the piezoelectric effect at the nanoscale in 2005; since then he has developed increasingly sophisticated nanowire generators and used them to harvest all sorts of biomechanical energy, including the movement of a running hamster. But until recently, Wang hadn't developed anything capable of harvesting enough power to actually run a device.
Source:
technologyreview.com
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Possible Futures
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |