Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Energy saving devices

Abstract:
Thanks to the Steeper project conducted by EPFL, electronic devices should in future consume 10 times less energy when functioning, and almost nothing when in standby mode.

Energy saving devices

EU | Posted on October 31st, 2010

From mobile telephones to supercomputers, and including laptops and television sets, the number of electronic devices is growing alarmingly together and, in parallel, their energy consumption. To respond to this trend, a large-scale initiative involving several major research institutions from the academic world and industry, and led by EPFL, has been launched. Nicknamed STEEPER, this project aims to cut down by a factor of 10 the energy consumption of these devices when they are functioning, and to virtually eliminate any energy consumption when they are in passive or standby mode.

With support from the 7th Framework Programme of the European Commission (FP7), scientists will be able to explore innovative modules on the nanometer scale for electronic chips, to bring down their operating voltage to less than 0.5 volts; this means lowering their electricity consumption by approximately 10-fold.

By reducing power consumption, STEEPER is taking a first step towards the "zero-watt" PC - "the Holy Grail of electronics", as Adrian M. Ionescu, Professor at the EPFL Nanolab and project coordinator, calls it. The long-term objective of this scientist is a form of electronics that is virtually autonomous, taking its energy from external phenomena such as solar, thermal or electromagnetic sources. This ambitious project, called NanoPCo, is scheduled for submission to Brussels, as a candidate for the research program FET Flagship.

Energy waste, the biggest challenge

"Energy waste is about to become the biggest challenge in electronics today, and in particular in the computer industry." This is the conclusion of Dr Heike Riel, researcher in charge of the nanoelectronic group at IBM Research in Zurich, and also involved in the project.

The development of innovative devices, such as steep slope transistors (hence the project name) can enable a much shorter transition between the "off" and "on" modes than is possible with the current 60mV/decade limit of metal-oxide-semiconductor, field-effect transistors (MOSFETs) at room temperature.

####

For more information, please click here

Copyright © EPFL

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project