Home > News > Batteries the Size of a Grain of Salt Enabled by Nanowires
October 25th, 2010
Batteries the Size of a Grain of Salt Enabled by Nanowires
Abstract:
Dexter Johnson: I have made clear my interest in seeing nanotechnology employed so as to improve the current state of batteries.
Let us make no mistake, nanotechnology, primarily in the form of nanofibers, is being used in batteries today. In fact it was estimated as far back 2005 that nearly 60% of batteries used nanofibers.
But what I am after, and I think your average consumer is looking for too, are rechargeable batteries for our portable devices that will last longer than a few hours (laptops) or a day or two (mobile phones and MP3 players), and instead will last weeks or months on a charge, and also significantly increase the number of times we can recharge those batteries without them progressively getting worse at holding that charge.
So I was intrigued by research funded by DARPA that looked as though it was pushing battery technology a bit further.
Source:
ieee.org
| Related News Press |
News and information
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Possible Futures
Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Events/Classes
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024
Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||