Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Triple-mode transistors show potential

Top left: A graphene transistor with source and drain electrodes; top right, a schematic for the triple-mode single-transistor graphene amplifier; and bottom, a graph showing the three distinct modes of operation. (Images: Mohanram Lab/Rice University)
Top left: A graphene transistor with source and drain electrodes; top right, a schematic for the triple-mode single-transistor graphene amplifier; and bottom, a graph showing the three distinct modes of operation. (Images: Mohanram Lab/Rice University)

Abstract:
Rice researchers introduce graphene-based amplifiers

Triple-mode transistors show potential

Houston, TX | Posted on October 13th, 2010

Rice University research that capitalizes on the wide-ranging capabilities of graphene could lead to circuit applications that are far more compact and versatile than what is now feasible with silicon-based technologies.

Triple-mode, single-transistor amplifiers based on graphene -- the one-atom-thick form of carbon that recently won its discoverers a Nobel Prize -- could become key components in future electronic circuits. The discovery by Rice researchers was reported this week in the online journal ACS Nano.

Graphene is very strong, nearly transparent and conducts electricity very well. But another key property is ambipolarity, graphene's ability to switch between using positive and negative carriers on the fly depending on the input signal. Traditional silicon transistors usually use one or the other type of carrier, which is determined during fabrication.

A three-terminal single-transistor amplifier made of graphene can be changed during operation to any of three modes at any time using carriers that are positive, negative or both, providing opportunities that are not possible with traditional single-transistor architectures, said Kartik Mohanram, an assistant professor of electrical and computer engineering at Rice. He collaborated on the research with Alexander Balandin, a professor of electrical engineering at the University of California, Riverside, and their students Xuebei Yang (at Rice) and Guanxiong Liu (at Riverside).

Mohanram likened the new transistor's abilities to that of a water tap. "Turn it on and the water flows," he said. "Turn it off and the water stops. That's what a traditional transistor does. It's a unipolar device -- it only opens and closes in one direction."

"But if you close a tap too much, it opens again and water flows. That's what ambipolarity is -- current can flow when you open the transistor in either direction about a point of minimum conduction."

That alone means a graphene transistor can be "n-type" (negative) or "p-type" (positive), depending on whether the carrier originates from the source or drain terminals (which are effectively interchangeable). A third function appears when the input from each carrier is equal: The transistor becomes a frequency multiplier. By combining the three modes, the Rice-Riverside team demonstrated such common signaling schemes as phase and frequency shift keying for wireless and audio applications.

"Our work, and that of others, that focuses on the applications of ambipolarity complements efforts to make a better transistor with graphene," Mohanram said. "It promises more functionality." The research demonstrated that a single graphene transistor could potentially replace many in a typical integrated circuit, he said. Graphene's superior material properties and relative compatibility with silicon-based manufacturing should allow for integration of such circuits in the future, he added.

Technological roadblocks need to be overcome, Mohanram said. Such fabrication steps as dielectric deposition and making contacts "wind up disturbing the lattice, scratching it and introducing defects. That immediately degrades its performance (limiting signal gain), so we have to exercise a lot of care in fabrication.

"But the technology will mature, since so many research groups are working hard to address these challenges," he said.

The National Science Foundation and the DARPA-Semiconductor Research Corporation's Focus Center Research Program supported the work.

Read the abstract at pubs.acs.org/doi/abs/10.1021/nn1021583.

####

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Chip Technology

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Nanoelectronics

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Research partnerships

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project