Home > Press > New Combo Drug Nanoparticle Could Improve Cancer Treatment
Abstract:
Researchers describe a nanoparticle capable of delivering a combination of drugs directly to a prostate cancer cell.
Research and the development of new cancer treatments, as a result of advances in DNA sequencing, have shown that combination drug therapy can be more effective than a single drug when treating some types of cancers. However, the effective administration of more than one drug can be challenging due to difficulties reaching the cancer cells with the appropriate amount of each drug. Developments in nanotechnology have begun to address this issue with recent research illustrating how nanoparticles are able to carry drugs and target cancer cells specifically. In new research from Brigham and Women's Hospital (BWH), researchers have developed a nanoparticle
capable of codelivering, or carrying two different drugs with entirely different physicochemical properties, directly to a prostate cancer cell and controlling the release of these drugs into the cell to maximize their effectiveness. This research is published online in the Early Edition of Proceedings of the National Academy of Science during the week of October 4, 2010 and in an upcoming print edition.
"Many cancer treatments require the administration of two drugs, but the current method for administering these drugs depends on the individual drug's characteristics and often doesn't reach the target - the cancer cell. With the nanoparticle construct we describe in this research, we are laying the foundation for the potential to drastically improve the delivery of cancer therapies. Use of the nanoparticle has the potential to allow for the effective, controlled delivery of a variety of combination therapies directly to the cancer cell," said Nagesh Kolishetti, a researcher in the Laboratory of Nanomedicine and Biomaterials at BWH.
In experiments performed in cell cultures, researchers achieved successful codelivery of two separate chemotherapy drugs with varying physical and chemical properties by developing a polymer to which the drugs could be attached and blending this polymer during the self assembly of the nanoparticle. The nanoparticle is able to target the membrane of a prostate cancer cell, become absorbed in the cell, and then release the drugs in a controlled fashion.
"We are excited about the potential that this finding unlocks and beginning to explore different drug combinations that can be used for other cancers and beyond," said Omid Farohkzad, MD, director of the Laboratory of Nanomedicine and Biomaterials at BWH and senior author on the paper. MIT Institute Professor Robert Langer and Stephen Lippard, the Arthur Amos Noyes Professor of Chemistry at MIT, are also senior authors of the paper.
More research is needed to explore both the potential drug combinations and the feasibility of translating this technology to clinical therapies.
####
About Brigham and Women's Hospital
Brigham and Women's Hospital (BWH) is a 793-bed nonprofit teaching affiliate of Harvard Medical School and a founding member of Partners HealthCare, an integrated health care delivery network. BWH is the home of the Carl J. and Ruth Shapiro Cardiovascular Center, the most advanced center of its kind. BWH is committed to excellence in patient care with expertise in virtually every specialty of medicine and surgery. The BWH medical preeminence dates back to 1832, and today that rich history in clinical care is coupled with its national leadership in quality improvement and patient safety initiatives and its dedication to educating and training the next generation of health care professionals. Through investigation and discovery conducted at its Biomedical Research Institute (BRI), BWH is an international leader in basic, clinical and translational research on human diseases, involving more than 900 physician-investigators and renowned biomedical scientists and faculty supported by more than $485 M in funding. BWH is also home to major landmark epidemiologic population studies, including the Nurses' and Physicians' Health Studies and the Women's Health Initiative.
For more information about BWH, please visit www.brighamandwomens.org.
For more information, please click here
Contacts:
Lori J. Shanks
(617) 534-1604
Copyright © Brigham and Women's Hospital
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||