Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Hydrogen-Powered, Solar-Inspired Nano-Battery

Abstract:
There's a big buzz today over future nanostructure devices performing specialized jobs in everything from electronics to medicine. But what's still needed are unconventional ways to power these tiny machines.

Hydrogen-Powered, Solar-Inspired Nano-Battery

Chicago, IL | Posted on September 26th, 2010

Eduard Karpov, University of Illinois at Chicago assistant professor of civil and materials engineering, just received a three-year, $217,000 grant from the National Science Foundation to develop a new battery he is calling a catalothermionic generator.

It will generate power on a flat planar surface, just like in a photovoltaic or solar cell, only instead of sunlight being the energy source, hydrogen oxidation will power the electron flow.

Unlike conventional hydrogen fuel cell technology that has been around for more than a century, this new approach, called "chemovoltaics," harnesses energy from hydrogen oxidation taking place on a film-like catalytic metal surface. Unlike fuel cells, the chemovoltaic device can be very small and flat and does not release or absorb heat, allowing it to run at much cooler temperatures. But like fuel cells, its energy-production byproduct is only water.

"This device is the child of the nanotechnology era," Karpov said. "It consists of nano-thickness layers of catalytic material on top of semiconductor substrates.

"We know the basic physics, but utilizing it for an energy application is a new idea," he said.

Karpov and his UIC laboratory team will test structural variations for building these nano-sized devices to generate maximum power. They will also test various types of catalytic materials such as platinum, palladium or some oxides to see what works best, vary the thicknesses of the catalytic material to see if that makes a difference, and try various patterned surfaces on the catalyst to learn if this affects performance.

Karpov envisions initial applications for these tiny generators in critical military devices where their small size and low weight will outweigh the high startup costs. As the technology develops, the generator might be attached directly to computer chips as a power source, or to tiny devices such as a nano-robot.

"Our main task is to show that this phenomenon, in principle, can lead to a commercially viable technology that has the potential to compete with fuel cells," he said.

####

For more information, please click here

Contacts:
University of Illinois at Chicago
Office of Public Affairs (MC 288)
601 S. Morgan St.
Chicago, IL 60607-7113
(312) 996-3456

Media Contact:
Paul Francuch
(312) 996-3457

Copyright © University of Illinois at Chicago

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Energy

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project