Home > Press > Study Shows Nano-Architectured Aluminum Has Steely Strength
Abstract:
A North Carolina State University researcher and colleagues have figured out a way to make an aluminum alloy, or a mixture of aluminum and other elements, just as strong as steel.
By Mick Kulikowski
That's important, says Dr. Yuntian Zhu, professor of materials science and the NC State researcher involved in the project, because the search for ever lighter - yet stronger - materials is crucial to devising everything from more fuel-efficient cars to safer airplanes.
In a paper published in the journal Nature Communications, Zhu and his colleagues describe the new nanoscale architecture within aluminum alloys that have unprecedented strength but also reasonable plasticity to stretch and not break under stress. Perhaps even more importantly, the technique of creating these nanostructures can be used on many different types of metals.
Zhu says the aluminum alloys have unique structural elements that, when combined to form a hierarchical structure at several nanoscale levels, make them super-strong and ductile.
The aluminum alloys have small building blocks, called "grains," that are thousands of times smaller than the width of a human hair. Each grain is a tiny crystal less than 100 nanometers in size. Bigger is not better in materials, Zhu says, as smaller grains result in stronger materials.
Zhu also says the aluminum alloys have a number of different types of crystal "defects." Nanocrystals with defects are stronger than perfect crystals.
Now, Zhu plans on working on strengthening magnesium, a metal that is even lighter than aluminum. He's collaborating with the Department of Defense on a project to make magnesium alloys strong enough to be used as body armor for soldiers.
Zhu's colleagues on the Nature Communications paper are affiliated with the University of Sydney in Australia; the University of California, Davis; and Ufa State Aviation Technical University in Russia.
The Department of Materials Science and Engineering is part of NC State's College of Engineering.
Abstract
"Nanostructural hierarchy increases the strength of aluminium alloys"
Authors: Yuntian Zhu, North Carolina State University; Peter Liddicoat, Simon P. Ringer and Xiao-Zhou Liao, University of Sydney; Yonghao Zhao and Enrique J. Lavernia, University of California, Davis; Maxim Y. Murashkin and Rusian Z. Valiev, Ufa State Aviation Technical University
Published: Sept. 7, 2010, in Nature Communications
Abstract: Increasing the strength of metallic alloys while maintaining formability is an interesting challenge for enabling new generations of lightweight structures and technologies. In this paper, we engineer aluminium alloys to contain a hierarchy of nanostructures and possess mechanical properties that expand known performance boundaries - an aerospace-grade 7075 alloy exhibits a yield strength and uniform elongation approaching 1 GPa and 5%, respectively. The nanostructural architecture was observed using novel high-resolution microscopy techniques and comprises a solid solution, free of precipitation, featuring (i) a high density of dislocations, (ii) subnanometre intragranular solute clusters, (iii) two geometries of nanometre-scale intergranular solute structures and (iv) grain sizes tens of nanometres in diameter. Our results demonstrate that this novel architecture offers a design pathway towards a new generation of super-strong materials with new regimes of property-performance space.
####
Contacts:
Mick Kulikowski
News Services
919.515.8387
Dr. Yuntian Zhu
919.513.0559
Copyright © North Carolina State University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Possible Futures
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Materials/Metamaterials/Magnetoresistance
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Military
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
Automotive/Transportation
Leading the charge to better batteries February 28th, 2025
Aerospace/Space
Onion-like nanoparticles found in aircraft exhaust May 14th, 2025
Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025
The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |