Home > News > Faster Catalysts Improve Hydrogen Generation
August 24th, 2010
Faster Catalysts Improve Hydrogen Generation
Abstract:
Anyone relying entirely on solar power or wind for electricity--say, in a remote location cut off from the grid--could use a cheap way to store power for use at night or when the wind isn't blowing. Today at the American Chemical Society meeting in Boston, researchers announced progress on one option: using electricity from solar panels or other sources to split water, producing hydrogen fuel that can be used to produce electricity anytime by means of a fuel cell or generator.
The researchers, led by MIT chemistry professor Daniel Nocera, say they've improved a system that uses potentially low-cost catalysts to facilitate a reaction in which electricity is used to break down water into hydrogen and oxygen, a process called electrolysis. Nocera says the catalysts could reduce the price of commercial electrolyzers to levels that are approximately 25 to 60 percent less than conventional electrolyzers and also make them practical for small-scale applications such as use in homes.
Source:
technologyreview.com
Related News Press |
Chemistry
Quantum interference in molecule-surface collisions February 28th, 2025
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |