Home > News > Faster Catalysts Improve Hydrogen Generation
August 24th, 2010
Faster Catalysts Improve Hydrogen Generation
Abstract:
Anyone relying entirely on solar power or wind for electricity--say, in a remote location cut off from the grid--could use a cheap way to store power for use at night or when the wind isn't blowing. Today at the American Chemical Society meeting in Boston, researchers announced progress on one option: using electricity from solar panels or other sources to split water, producing hydrogen fuel that can be used to produce electricity anytime by means of a fuel cell or generator.
The researchers, led by MIT chemistry professor Daniel Nocera, say they've improved a system that uses potentially low-cost catalysts to facilitate a reaction in which electricity is used to break down water into hydrogen and oxygen, a process called electrolysis. Nocera says the catalysts could reduce the price of commercial electrolyzers to levels that are approximately 25 to 60 percent less than conventional electrolyzers and also make them practical for small-scale applications such as use in homes.
Source:
technologyreview.com
| Related News Press |
News and information
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025
Chemistry
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Announcements
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Energy
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Solar/Photovoltaic
Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||