Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanosensors Detect Signs of Cancer in Human Breath

Abstract:
With a single breath, a Breathalyzer™ can tell a police officer when a driver has had too much to drink. Now, thanks to a team of investigators at the Israel Institute of Technology, a single breath may be enough to tell a doctor that their patient has cancer.

Nanosensors Detect Signs of Cancer in Human Breath

Bethesda, MD | Posted on August 18th, 2010

Reporting its work in the British Journal of Cancer, a research team headed by Hossam Haick demonstrated that a nanosensor array made of gold nanoparticles can differentiate between healthy patients and those with lung, breast, colorectal, and prostate cancers based on a single exhaled breath. The nanosensor array detects trace chemical known as volatile organic compounds (VOCs) that are generated by cancer cells, escape into the blood stream, and then released along with carbon dioxide into the lungs, from which they are exhaled. In addition, the investigators found that patients with each of the four cancers had characteristic VOC profiles, though these differences were not well-differentiated enough to diagnose a specific form of cancer.

To test their device, the researchers collected exhaled breaths from 177 volunteers, 96 of whom had just been diagnosed with lung, breast, colorectal, or prostate cancer and had not yet received therapy. Each test subject spent up to five minutes breathing purified air before exhaling into a collection bag; this was to ensure that any VOCs detected in the subjects' breaths did not originate in the ambient air that they were breathing. The researchers used collection bags made of chemically inert Mylar so that the bags could be reused after thorough cleaning with ultrapure nitrogen gas.

After testing the samples using their nanosensor array, the investigators repeated their analysis using gas chromatography-mass spectrometry (GC-MS), a highly accurate analytical method that would be too slow and costly to use in any routine diagnostic procedure. GC-MS also requires the use of a pre-concentration step in order to detect the low levels of VOCs in human breath. Comparison of the results obtained using the two techniques showed that the nanosensor arrays was the more accurate of the two methods as far as discriminating between healthy patients and those with cancer, and in distinguishing one type of cancer from another. More importantly, results from the nanosensor array - unlike those obtained using GC-MS - were not dependent on the gender, age, ethnic origin, family cancer history, intake of food additives, drug treatment, exposure to environmental toxins, and smoking habits.

This work is detailed in a paper titled, "Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors." An abstract of this paper is available at the journal's Web site.

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Sensors

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project