Home > Press > How would a nano revolution affect me? Encyclopedia has the answers.
The two-volume Encyclopedia of Nanoscience and Society, edited by ASU professor David H. Guston, is accessible and jargon-free. |
Abstract:
Edited by David H. Guston, director of ASU's Center for Nanotechnology in Society and professor of political science, this resource isn't designed for the scientist or engineer, but rather for the rest of us who have plenty of questions about nanotechnology - and what it means for our lives - but are afraid to ask.
Produced by volcanic explosions, nanoparticles - about a thousand times smaller than a fly's eye - have always been part of the earth's atmosphere. Used, if not understood, by artisans for centuries, nanomaterials have been part of pottery glazes, metallurgy and the glass work of cathedrals. Produced by diesel exhaust, they have been a human-generated pollutant since before the term nanotechnology was coined. In the modern age, the possibilities for technological achievements at the nanoscale have been the staples of scientific and literary visionaries for decades.
Now, nanoscience has garnered billions of dollars of funding. It has been hailed by promoters as ushering in the "next industrial revolution" and dismissed by skeptics as nothing more than "hype." But, for such a richly anticipated field, it has already made its way into products all around us - from odor-eating socks to cosmetics, from medications to toys - without much fanfare. At the same time, popular media entertain us with visions of nanotechnology as cornucopia or Armageddon. Somewhere in between are social scientists, ethicists and others reflecting on our understanding of the broad implications of nanotechnology, gauging its promises and risks, assessing the impacts of policy decisions, and communicating the meaning of nanoscience research - in short, observing, contemplating and measuring nanoscience as a social and human endeavor in its origins, practices and consequences.
The newly-released two-volume Encyclopedia of Nanoscience and Society is the result. Edited by David H. Guston, director of ASU's Center for Nanotechnology in Society and professor of political science, this resource isn't designed for the scientist or engineer, but rather for the rest of us who have plenty of questions about nanotechnology - and what it means for our lives - but are afraid to ask.
We have very little understanding about the occupational safety and health issues involved in either laboratory nanoscience or industrial production of nanomaterials. We have perhaps less understanding about the fate of nano-silver particles - used in myriad consumer products for their antimicrobial properties - as they move from these products into our water and our bodies. We have still less understanding about the ethical, legal and social consequences of even some of the more modest attempts to use nanotechnologies for medical therapies like targeted cancer drugs, and enhancements like neural implants. And we have, perhaps, the least understanding of what will happen technically, environmentally and culturally if and when nanoscience and nanotechnologies converge with synthetic biology, with robotics and with neurotechnologies.
"It is possible that both perspectives - next industrial revolution or just hype - are correct," said Guston. "Nanoscience and nanotechnology could at some time emerge as the engines of one of the most spectacular transformations of human societies, but it also could be that we started down this path led more by our hopes and fears than by reason, more by a sense of adventure than a sense of responsibility. It is challenges like these that make an encyclopedia of nanoscience and society a necessity."
The Encyclopedia of Nanoscience and Society provides an accessible and jargon-free guide to what these understandings and challenges are all about.
Published by SAGE Publications, Inc., the Encyclopedia of Nanoscience and Society contains approximately 425 signed entries by contributors from a variety of disciplines - sociology and psychology, economics and business, science and engineering, computing and information technology, philosophy, ethics, public policy, and more. They bring varied perspectives to the questions of nanotechnology in society in such general topic areas as: ethics and values; social and environmental issues; law, policy, regulation and governance around the globe; art, design and materials; agriculture and food safety; health, safety, and medical ethics; commercial and economic issues; educational and training issues; computing and information technology; history, philosophy and the human condition; national security and civil liberties; military uses and issues; converging technologies; risk assessment; and technology "haves" and "have-nots." It also includes helpful aids such as a chronology, a resource guide and a glossary.
Among the contributors to the Encyclopedia of Nanoscience and Society are 26 scholars from Arizona State University and beyond who are affiliated with the Center for Nanotechnology in Society (CNS-ASU), which is funded by the National Science Foundation:
Braden Allenby, ASU
Javiera Barandiaran, University of California, Berkeley
Daniel Barben, RWTH Aachen University
Troy Benn, ASU
Shannon Conley, ASU
Elizabeth A. Corley, ASU
Susan Cozzens, Georgia Tech
Erik Fisher, ASU
Patrick Hamlett, North Carolina State University
Matthew Harsh, ASU
Sean Hays, ASU
Shirley Ho, University of Wisconsin
Daniel Lee Kleinman, University of Wisconsin
Gary Marchant, ASU
Richard Milford, ASU
Mark Philbrick, University of California, Berkeley
Alan L. Porter, Georgia Tech
Juan D. Rogers, Georgia Tech
Cynthia Selin, ASU
Dietram Scheufele, University of Wisconsin
Philip Shapira, Georgia Tech
Catherine Slade, ASU and University of Georgia
Li Tang, Georgia Tech
Jue Wang, Florida International University
Jameson Wetmore, ASU
Gregor Wolbring, University of Calgary
For more information about the Encyclopedia of Nanoscience and Society, visit SAGE Publications online at www.sagepub.com/booksProdDesc.nav?prodId=Book233289&
####
About Center for Nanotechnology in Society at Arizona State University
The Center for Nanotechnology in Society at Arizona State University is a federally-funded academic research, education and outreach center focused on the complex societal relations forming around nanoscale science and engineering research. It gathers scores of researchers and educators across ASU and other public research universities to pursue an ambitious array of interdisciplinary programs. Its vision is to develop new ways of producing knowledge through the collaboration of scientists and non-scientists alike, so that deliberation and decision making about nanoscale science and engineering is improved, thereby ensuring that nanotechnology advances improve the quality of life for all. CNS-ASU probes the hypothesis that a greater ability for reflexiveness – that is, social learning that expands the range of available choices – can help guide the directions of knowledge and innovation toward socially desirable outcomes, and away from undesirable ones.
For more information about CNS-ASU, visit online at cns.asu.edu or send e-mail to
For more information, please click here
Contacts:
Cathy Arnold
(480) 965-0555
Consortium for Science, Policy and Outcomes
Copyright © Center for Nanotechnology in Society at ASU
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Ethics
Artificial Intelligence Centered Cancer Nanomedicine: Diagnostics, Therapeutics and Bioethics June 3rd, 2022
Iran to hold intl. school on application of nanomaterials in medicine September 20th, 2016
Synthetic biology needs robust safety mechanisms before real world application: Ethics and technology hold the key to the success of synthetic biology September 17th, 2015
March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015
Preparing for Nano
Disruptive by Design: Nano Now February 1st, 2019
How nanoscience will improve our health and lives in the coming years: Targeted medicine deliveries and increased energy efficiency are just two of many ways October 26th, 2016
Searching for a nanotech self-organizing principle May 1st, 2016
Products
Spectradyne Partners with Particle Technology Labs for Measurement Services December 6th, 2018
Mode-Changing MEMS Accelerometer from STMicroelectronics Combines High Measurement Resolution and Ultra-Low Power for Industrial Applications November 7th, 2018
Fat-Repellent Nanolayers Can Make Oven Cleaning Easier October 17th, 2018
Aculon, Inc. Enters into Strategic Partnership Agreement with Henkel Corporation to Supply Key Mobile Device Manufacturers with NanoProof® PCB Waterproof Technology October 17th, 2018
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Homeland Security
The picture of health: Virginia Tech researchers enhance bioimaging and sensing with quantum photonics June 30th, 2023
Sensors developed at URI can identify threats at the molecular level: More sensitive than a dog's nose and the sensors don't get tired May 21st, 2021
Highly sensitive dopamine detector uses 2D materials August 7th, 2020
Food/Agriculture/Supplements
Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023
Night-time radiative warming using the atmosphere November 17th, 2023
DGIST and New Life Group launched a research project on "Functional beauty and health products using the latest nanotechnology" May 12th, 2023
Environment
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
New method in the fight against forever chemicals September 13th, 2024
Safety-Nanoparticles/Risk management
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023
Human Interest/Art
Drawing data in nanometer scale September 30th, 2022
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Graphene nanotubes revolutionize touch screen use for prosthetic hands August 3rd, 2021
JEOL Announces 2020 Microscopy Image Grand Prize Winners January 7th, 2021
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||