Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Polymer passage takes time

Abstract:
New theory aids researchers studying DNA, protein transport

Polymer passage takes time

Houston, TX | Posted on July 29th, 2010

Polymer strands wriggle their way through nanometer-sized pores in a membrane to get from here to there and do their jobs. New theoretical research by Rice University scientists quantifies precisely how long the journey takes.

That's a good thing to know for scientists studying the transport of RNA, DNA and proteins -- all of which count as polymers -- or those who are developing membranes for use in biosensors or as drug-delivery devices.

Researchers led by Anatoly Kolomeisky, an associate professor of chemistry and of chemical and biomolecular engineering, have come up with a theoretical method to calculate the time it takes for long-chain polymers to translocate through nano-sized channels in membranes, like the one that separates the nucleus of a cell from surrounding cytoplasm. RNA molecules have to make this intracellular trip, as do proteins that pass through a cell's exterior membrane to perform tasks in the body.

Primary author Kolomeisky reported the findings this month in the Journal of Chemical Physics. Study co-authors include Aruna Mohan, a former postdoctoral research associate at Rice and now a researcher at Exxon-Mobil, and Matteo Pasquali, professor in chemical and biomolecular engineering and chemistry.

The team studied the translocation of a long polymer molecule, which roughly resembles beads on a string, through two types of nanopore geometries: a cylinder and a two-cylinder composite that resembled a large tube connected to a small tube. Not surprisingly, they found a polymer passed more quickly when entering the composite through the wide end.

"We assume the polymer is relatively large in comparison with the size of the pore, which is realistic," Kolomeisky said of the process, which is akin to threading a rope through a peephole. "A typical strand of DNA could be a thousand nanometers long, and the pore could have a length of a few nanometers."

It's been known for some time that polymers don't just fly through a pore, even when they find the opening. They start. They stop. They start again. And once the leading end has entered a pore, it can back out. Polymers often jitter backward and forward as they progress through a pore, constantly reconfiguring themselves.

"Previous theorists thought that as soon as the leading end reached the channel, the whole polymer would go through," he said. "We're saying it goes back and forth many times before it finally passes."

The key to an accurate description of polymer translocation with single-molecule precision is measuring electric currents that go through the pore. "When the current is high, there's no polymer in the channel. When the current is down, it's in the pore and blocking the flux," he said.

Experiments indicate typical DNA and RNA molecules could pass through a membrane in a few milliseconds, depending on the strength of the electric field driving them. But even that, he said, is much longer than researchers previously thought.

Kolomeisky said the new method works for pores of any geometry, whether they're straight, conical or made of joined cylinders of different sizes, like the hemolysin biological channel they simulated in their research.

The calculations apply equally to natural or artificial pores, which he said would be important to scientists making membranes for drug delivery, biosensors or water purification processes, or researching new methods for sequencing DNA.

Grants from the Welch Foundation and the National Science Foundation supported the research.

Read the abstract at jcp.aip.org/jcpsa6/v133/i2/p024902_s1

####

For more information, please click here

Contacts:
Mike Williams
PHONE: 713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanomedicine

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Sensors

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Nanobiotechnology

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Low-cost formulation reduces dose and increases efficacy of drug against worms: Praziquantel, usually administered in large tablets, is the only anthelmintic available on the market. New form of presentation uses nanotechnology and facilitates use by children and pets May 16th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project