Home > Press > By “putting a ring on it," microparticles can be captured
This schematic illustration shows a particle revolving around a silicon micro-ring resonator, propelled by optical forces. |
Abstract:
Silicon micro-ring resonator could help advance nanomanipulation
By Michael Patrick Rutter, Harvard School of Engineering and Applied Sciences
To trap and hold tiny microparticles, research engineers at Harvard have "put a ring on it," using a silicon-based circular resonator to confine particles stably for up to several minutes.
The advance, published recently in Nano Letters, could one day lead to the ability to direct, deliver, and store nanoparticles and biomolecules on all-optical chips.
"We demonstrated the power of what we call resonant cavity trapping, where a particle is guided along a small waveguide and then pulled onto a micro-ring resonator," explains Kenneth Crozier, an associate professor of electrical engineering at the Harvard School of Engineering and Applied Sciences (SEAS) who directed the research. "Once on the ring, optical forces prevent it from escaping, and cause it to revolve around it."
The process looks similar to what you see in liquid motion toys, where tiny beads of colored drops run along plastic tracks—but on much smaller scale and with different physical mechanisms. The rings have radii of a mere 5 to 10 micrometers and are built using electron beam lithography and reactive ion etching.
Specifically, laser light is focused into a waveguide. Optical forces cause a particle to be drawn down toward the waveguide, and pushed along it. When the particle approaches a ring fabricated close to the waveguide, it is pulled from the waveguide to the ring by optical forces. The particle then circulates around the ring, propelled by optical forces at velocities of several hundred micrometers-per-second.
While using planar ring resonators to trap particles is not new, Crozier and his colleagues offered a new and more thorough analysis of the technique. In particular, they showed that using the silicon ring results in optical force enhancement (5 to 8 times versus the straight waveguide).
"Excitingly, particle-tracking measurements with a high speed camera reveal that the large transverse forces stably localize the particle so that the standard deviation in its trajectory, compared to a circle, is as small as 50 nm," says Crozier. "This represents a very tight localization over a comparatively large distance."
The ultimate aim is to develop and demonstrate fully all-optical on chip manipulation that offers a way to guide, store, and deliver both biological and artificial particles.
Crozier's co-authors included Shiyun Lin, a graduate student, and Ethan Schonburn, a research associate, both at SEAS.
The authors acknowledge funding from the Harvard Nanoscale Science and Engineering Center (NSEC) and the Center for Nanoscale Systems at Harvard, both supported by the National Science Foundation (NSF).
####
For more information, please click here
Copyright © Harvard University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Optical computing/Photonic computing
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||