Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > By “putting a ring on it," microparticles can be captured

This schematic illustration shows a particle revolving around a silicon micro-ring resonator, propelled by optical forces.
This schematic illustration shows a particle revolving around a silicon micro-ring resonator, propelled by optical forces.

Abstract:
Silicon micro-ring resonator could help advance nanomanipulation

By Michael Patrick Rutter, Harvard School of Engineering and Applied Sciences

By “putting a ring on it," microparticles can be captured

Cambridge, MA | Posted on July 28th, 2010

To trap and hold tiny microparticles, research engineers at Harvard have "put a ring on it," using a silicon-based circular resonator to confine particles stably for up to several minutes.

The advance, published recently in Nano Letters, could one day lead to the ability to direct, deliver, and store nanoparticles and biomolecules on all-optical chips.

"We demonstrated the power of what we call resonant cavity trapping, where a particle is guided along a small waveguide and then pulled onto a micro-ring resonator," explains Kenneth Crozier, an associate professor of electrical engineering at the Harvard School of Engineering and Applied Sciences (SEAS) who directed the research. "Once on the ring, optical forces prevent it from escaping, and cause it to revolve around it."

The process looks similar to what you see in liquid motion toys, where tiny beads of colored drops run along plastic tracks—but on much smaller scale and with different physical mechanisms. The rings have radii of a mere 5 to 10 micrometers and are built using electron beam lithography and reactive ion etching.

Specifically, laser light is focused into a waveguide. Optical forces cause a particle to be drawn down toward the waveguide, and pushed along it. When the particle approaches a ring fabricated close to the waveguide, it is pulled from the waveguide to the ring by optical forces. The particle then circulates around the ring, propelled by optical forces at velocities of several hundred micrometers-per-second.

While using planar ring resonators to trap particles is not new, Crozier and his colleagues offered a new and more thorough analysis of the technique. In particular, they showed that using the silicon ring results in optical force enhancement (5 to 8 times versus the straight waveguide).

"Excitingly, particle-tracking measurements with a high speed camera reveal that the large transverse forces stably localize the particle so that the standard deviation in its trajectory, compared to a circle, is as small as 50 nm," says Crozier. "This represents a very tight localization over a comparatively large distance."

The ultimate aim is to develop and demonstrate fully all-optical on chip manipulation that offers a way to guide, store, and deliver both biological and artificial particles.

Crozier's co-authors included Shiyun Lin, a graduate student, and Ethan Schonburn, a research associate, both at SEAS.

The authors acknowledge funding from the Harvard Nanoscale Science and Engineering Center (NSEC) and the Center for Nanoscale Systems at Harvard, both supported by the National Science Foundation (NSF).

####

For more information, please click here

Copyright © Harvard University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Optical computing/Photonic computing

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Programmable electron-induced color router array May 14th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Tools

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project