Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Illuminex Corporation Closes $500k Angel Financing Round

Illuminex currently uses silicon for novel photovoltaic technology development. Silicon is a stable semiconductor with controllable properties. It is material of choice for opto-electronic device applications. Currently, silicon technologies accounts for 94% of the photovoltaic industry.
Illuminex currently uses silicon for novel photovoltaic technology development. Silicon is a stable semiconductor with controllable properties. It is material of choice for opto-electronic device applications. Currently, silicon technologies accounts for 94% of the photovoltaic industry.

Abstract:
Nanomaterial firm closes $500K angel financing round to commercialize patented nanowire array based technologies for solar cells, lithium-ion battery anodes, and thermal management materials based on the company's nanowire array technology.

Illuminex Corporation Closes $500k Angel Financing Round

Lancaster, PA | Posted on July 26th, 2010

Illuminex Corporation, based in Lancaster, PA, recently closed a $500K financing round from undisclosed investors. Combined with the Company's multiple State and Federal research grants, this funding will provide over one year of operating runway for Illuminex to accelerate the development and commercialization of functional nanomaterials for commercial devices aimed at emerging alternative energy markets. These include lithium-ion batteries, heat pipes for thermal management, and photovoltaics for producing sustainable solar electricity. The Company is seeking strategic partnerships and additional funding.

Founded by nano-physicists from MIT, Illuminex is commercializing devices based on a platform nanowire array process technology. The Company has developed novel, cost-effective methods for manufacturing nanowire arrays on low-cost substrates using aluminum in a multi-functional capacity. The nanowires resemble bristles on a toothbrush, where each "bristle" is 1/1000th the thickness of a human hair and there are 1 billion "bristles" per square centimeter. The processes Illuminex utilizes to produce the nanowire arrays are readily scalable for mass production.

Company CEO Joe Habib states, "Illuminex's capabilities and methods for engineering nanowire arrays using numerous materials on diverse substrates is what makes the company unique. We are applying these techniques to create novel materials with unique functions by leveraging the small size, uniformity, and density of the nano-structures. These functional nanomaterials could be very important in developing sustainable energy solutions."

Illuminex has begun sampling copper-silicon nanocomposites for use as high capacity lithium ion battery anodes. The nanowires will allow high energy density with very low fade rates and the production techniques are conducive to large-scale, low-cost manufacturing.

Graphite, the most commonly used anode in lithium-ion batteries, has a limited charge capacity (372 mAh/g) that is particularly problematic for applications such as electric vehicles. Silicon has the highest known charge capacity (11 times greater than graphite), making it a highly attractive anode material. However, silicon expands (up to 400%) as it reacts with lithium and disintegrates from the stress when sufficient quantities are used, thus preventing the implementation of this important technology. Illuminex Cu-Si nanocomposite anodes allow silicon to be used by imparting structural support to the silicon with copper nanowires that act analogously to rebar in concrete, while imparting highly effective electrical exchange and added thermal stability.

Another device that Illuminex is prototyping is nanowire photovoltaic (PV) cells based on a dense array of silicon diode nanowires. The PV nanowire material has a theoretical efficiency of 35%, greater than bulk crystalline silicon (typically 20% efficient). Nanowire PV-based cells also use 1/100th the amount of silicon per unit PV cell area as silicon wafer-based cells, potentially offering a much lower $/KWh cost. Illuminex can fabricate the silicon nanowires on glass, metal, threads, or virtually any surface that can be coated.

Illuminex is also developing nanowire-based heat pipes that use copper nanowires as the wick material, replacing conventional sintered copper powder. The nanowire heat pipes currently have 30% lower thermal resistance than conventional wicks and perform at input heat fluxes exceeding 350 W/cm, where sintered powder fails catastrophically. Modified Illuminex nanowire wicks could improve heat pipe efficiency by 5 times conventional sintered powder heat pipes at comparable cost. Illuminex is targeting heat pipe markets for servers/PCs, microprocessors, military and industrial use, and in broader markets for nanowire based thermal interface materials. For additional information, contact George Lauro, Member, Illuminex Board of Directors and Partner, Alteon Capital Partners.

####

About Illuminex
Illuminex was founded in 2003 by Dr. Joe Habib, an MIT Fellow active in nanotechnology ventures for over a decade. Headquartered in Lancaster, PA, Illuminex has 10 employees. Its facilities include three fully equipped research laboratories totaling 5500 square feet, including a brand new CVD facility. Illuminex fabricates nanowires made from a wide range of materials in diverse geometries on numerous substrates. Its near-term products target energy verticals, specifically silicon nanowire arrays for photovoltaics, and copper-silicon nanocomposites for lithium ion battery anodes and copper nanowires for thermal/heat pipes. Illuminex has developed significant patented intellectual property in material formulations, manufacturing methods, and device applications. It has 11 patents pending and 1 patent issued (US 7713849). For more information, visit www.illuminex.biz.

For more information, please click here

Contacts:
George Lauro
Phone: 408-688-1982

Copyright © Illuminex

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Investments/IPO's/Splits

Daikin Industries becomes OCSiAl shareholder July 27th, 2021

180 Degree Capital Corp. Reports +14.2% Growth in Q1 2021, $10.60 Net Asset Value Per Share as of March 31, 2021, and Developments From Q2 2021 May 11th, 2021

INBRAIN Neuroelectronics raises over €14M to develop smart graphene-based neural implants for personalised therapies in brain disorders March 26th, 2021

180 Degree Capital Corp. Issues Second Open Letter to the Board and Shareholders of Enzo Biochem, Inc. March 26th, 2021

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project