Home > Press > Liverpool scientists construct molecular `knots'
![]() |
The molecular `knots' have dimensions of around two nanometers |
Abstract:
Scientists at the University of Liverpool have constructed molecular 'knots' with dimensions of around two nanometers (2 x 10-9 nm) - around 30,000 times smaller than the diameter of a human hair.
Most molecules are held together by chemical bonds between atoms - ‘nano-knots' are instead mechanically bonded by interpenetrating loops. Liverpool scientists have managed to create nanoscale knots in the laboratory by mixing together two simple starting materials - one a rigid aromatic compound and the other a more flexible amine linker.
This is an unusual example of ‘self-assembly', a process which underpins biology and allows complex structures to assemble from more simple building blocks. Each knot is ‘tied' three times: that is, at least three chemical bonds must be broken to untie the knot. A single knot is a complex assembly of 20 smaller molecules.
Professor Andrew Cooper, Director of the University's Centre for Materials Discovery, said: "I was amazed when we discovered these molecules; we actually set out to make something simpler. A complex structure arises out of quite basic building blocks.
"It is like shaking Scrabble tiles in a bag and pulling out a fully formed sentence. These are the surprises which make scientific research so fascinating."
The experimental work was led by Dr Tom Hasell, a Postdoctoral Researcher, who recognized that the data in an experiment to create organic nanocages was anomalous. In particular, the mass of the molecules was twice as high as expected, a result of the complex mechanical interlocking of two molecular sub-units. The team is now focusing on the practical application of these molecules and similar structures - for example, to build molecular ‘machines' which can trap harmful gases and pollutants such as carbon dioxide.
The research, which was published in the journal Nature Chemistry, forms part of a broader five-year programme focusing on the synthesis of new materials for applications such as energy storage and conversion. The project is funded by the Engineering and Physical Sciences Research Council (EPSRC).
####
For more information, please click here
Contacts:
Kate Spark
Head of Public Relations
Phone: work +44 (0) 151 794 2247
Out of hours (cell+44 (0) 7970 247391)
Samantha Martin
Senior Press Officer
Phone: work +44 (0) 151 794 2248
Out of hours (cell+44 (0) 7973 247836)
Sarah Stamper
Press and Marketing Officer
Phone: work +44 (0) 151 794 3044
Out of hours (cell+44 (0) 7970 247396)
Copyright © University of Liverpool
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Govt.-Legislation/Regulation/Funding/Policy
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Possible Futures
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Molecular Machines
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Nanotech scientists create world's smallest origami bird March 17th, 2021
Giant nanomachine aids the immune system: Theoretical chemistry August 28th, 2020
Self Assembly
Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024
Liquid crystal templated chiral nanomaterials October 14th, 2022
Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022
Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Environment
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Onion-like nanoparticles found in aircraft exhaust May 14th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |