Home > Press > Battery research could lead to shorter recharge time for cell phones
![]()  | 
| New battery materials developed by the Department of Energy’s Pacific Northwest National Laboratory and Vorbeck Materials Corp. could enable electric vehicles and other consumer electronics to recharge in minutes rather than hours. Here a PNNL researcher prepares and tests lithium ion batteries and lithium/air batteries for vehicle and other mobile applications. | 
Abstract:
Adding a bit of graphene to battery materials could dramatically cut the time it takes to recharge electronics
New battery materials developed by the Department of Energy's Pacific Northwest National Laboratory and Vorbeck Materials Corp. of Jessup, Md., could enable electric vehicles, power tools and even cell phones to recharge in minutes rather than hours. 
In collaboration with Vorbeck and researcher Ilhan Aksay at Princeton University, PNNL has demonstrated that small quantities of graphene — an ultra-thin sheet of carbon atoms — can dramatically improve the power and cycling stability of lithium-ion batteries, while maintaining high energy storage capacity.  The pioneering work could lead to the development of batteries that store larger amounts of energy and recharge quickly. 
Today, a typical cell phone battery takes between two and five hours to fully recharge.  Researchers think using new battery materials with graphene could cut recharge time to less than 10 minutes.   
Battelle, which operates PNNL for DOE, entered into a Cooperative Research and Development Agreement with Vorbeck for use of its unique graphene material, Vor-xTM, in battery materials synthesis research. 
This research is made possible the by the Department of Energy's Office of Energy Efficiency and Renewable Energy's Technology Commercialization Fund.
####
About Pacific Northwest National Laboratory
Pacific Northwest National Laboratory is a Department of Energy Office of Science national laboratory where interdisciplinary teams advance science and technology and deliver solutions to America's most intractable problems in energy, the environment and national security. PNNL employs 4,700 staff, has an annual budget of nearly $1.1 billion, and has been managed by Ohio-based Battelle since the lab's inception in 1965. 
For more information, please click here
Copyright © Pacific Northwest National Laboratory
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press | 
News and information
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Possible Futures
    Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Academic/Education
    Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
    Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
    Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
    Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
    Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Announcements
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Energy
    Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
    Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
    Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
    Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Research partnerships
    Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
    HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
| 
			 | 
	||
| 
			 | 
	||
| The latest news from around the world, FREE | ||
| 
			 | 
	||
| 
			 | 
	||
| Premium Products | ||
| 
			 | 
	||
| 
			Only the news you want to read! 
			 Learn More  | 
		||
| 
			 | 
	||
| 
			Full-service, expert consulting 
			 Learn More  | 
		||
| 
			 | 
	||