Home > Press > Could humans be infected by computer viruses?
Abstract:
A scientist at the University of Reading has become the first person in the world to be infected by a computer virus.
Dr Mark Gasson, from the School of Systems Engineering, contaminated a computer chip which had been inserted into his hand as part of research into human enhancement and the potential risks of implantable devices.
These results could have huge implications for implantable computing technologies used medically to improve health, such as heart pacemakers and cochlear implants, and as new applications are found to enhance healthy humans.
Dr Gasson says that as the technology behind these implants develops, they become more vulnerable to computer viruses.
"Our research shows that implantable technology has developed to the point where implants are capable of communicating, storing and manipulating data," he said. "They are essentially mini computers. This means that, like mainstream computers, they can be infected by viruses and the technology will need to keep pace with this so that implants, including medical devices, can be safely used in the future."
Dr Gasson will present his results next month at the IEEE International Symposium on Technology and Society in Australia, which he is also chairing.
A high-end Radio Frequency Identification (RFID) chip was implanted into Dr Gasson's left hand last year. Less sophisticated RFID technology is used in shop security tags to prevent theft and to identify missing pets.
The chip has allowed him secure access to his University building and his mobile phone. It has also enabled him to be tracked and profiled. Once infected, the chip corrupted the main system used to communicate with it. Should other devices have been connected to the system, the virus would have been passed on.
Dr Gasson said: "By infecting my own implant with a computer virus we have demonstrated how advanced these technologies are becoming and also had a glimpse at the problems of tomorrow.
"Much like people with medical implants, after a year of having the implant, I very much feel that it is part of my body. While it is exciting to be the first person to become infected by a computer virus in this way, I found it a surprisingly violating experience because the implant is so intimately connected to me but the situation is potentially out of my control.
"I believe it is necessary to acknowledge that our next evolutionary step may well mean that we all become part machine as we look to enhance ourselves. Indeed we may find that there are significant social pressures to have implantable technologies, either because it becomes as much of a social norm as say mobile phones, or because we'll be disadvantaged if we do not. However we must be mindful of the new threats this step brings."
####
For more information, please click here
Contacts:
Rona Cheeseman
press officer
0118 378 7388
Copyright © University of Reading
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press | 
News and information
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Ethics
    Artificial Intelligence Centered Cancer Nanomedicine: Diagnostics, Therapeutics and Bioethics June 3rd, 2022
    Iran to hold intl. school on application of nanomaterials in medicine September 20th, 2016
    Synthetic biology needs robust safety mechanisms before real world application: Ethics and technology hold the key to the success of synthetic biology September 17th, 2015
    March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015
Possible Futures
    Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Academic/Education
    Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
    Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Chip Technology
    Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
    A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
    Programmable electron-induced color router array May 14th, 2025
Nanoelectronics
    Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
    Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
    Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
    Reduced power consumption in semiconductor devices September 23rd, 2022
Announcements
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Safety-Nanoparticles/Risk management
    Onion-like nanoparticles found in aircraft exhaust May 14th, 2025
    Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
| 
			 | 
	||
| 
			 | 
	||
| The latest news from around the world, FREE | ||
| 
			 | 
	||
| 
			 | 
	||
| Premium Products | ||
| 
			 | 
	||
| 
			Only the news you want to read! 
			 Learn More  | 
		||
| 
			 | 
	||
| 
			Full-service, expert consulting 
			 Learn More  | 
		||
| 
			 | 
	||